Spaces:
Running
Running
File size: 12,978 Bytes
143340f 651cf86 42691c2 651cf86 143340f 651cf86 42691c2 651cf86 b1a80f7 651cf86 4522e90 651cf86 b1a80f7 6c0b217 663c0e0 6c0b217 663c0e0 6c0b217 663c0e0 6c0b217 663c0e0 6c0b217 651cf86 42691c2 651cf86 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 |
import streamlit as st
import joblib
import numpy as np
from huggingface_hub import hf_hub_download
# Page configuration
st.set_page_config(
page_title="Loan Approval System",
page_icon="🏦",
layout="centered",
initial_sidebar_state="collapsed"
)
# Custom CSS for styling with the specified color theme
st.markdown("""
<style>
/* Color Theme */
:root {
--primary-purple: #7950F2;
--primary-purple-light: #9775F3;
--primary-purple-dark: #5F3DC4;
--complementary-orange: #FF5E3A;
--complementary-orange-light: #FF8A6C;
--light-gray: #F8F9FA;
--dark-gray: #343A40;
}
/* Main containers */
.main .block-container {
padding: 2rem;
border-radius: 10px;
background-color: white;
box-shadow: 0 4px 12px rgba(0, 0, 0, 0.05);
}
/* Font family */
body, .stMarkdown, p, h1, h2, h3, h4, h5, h6, .stButton, .stSelectbox, .stNumberInput {
font-family: 'Helvetica', 'Arial', sans-serif !important;
}
/* Headers */
h1, h2, h3 {
color: var(--primary-purple-dark);
}
/* Custom cards for sections */
.section-card {
background-color: var(--light-gray);
border-radius: 8px;
padding: 1.5rem;
margin-bottom: 1.5rem;
border-left: 4px solid var(--primary-purple);
}
/* Button styling */
.stButton > button {
background-color: var(--primary-purple);
color: white;
border: none;
border-radius: 5px;
padding: 0.5rem 1rem;
font-weight: bold;
width: 100%;
transition: all 0.3s;
}
.stButton > button:hover {
background-color: var(--primary-purple-dark);
transform: translateY(-2px);
box-shadow: 0 4px 8px rgba(0, 0, 0, 0.1);
}
/* Result styling */
.result-approved {
background-color: #E8F5E9;
border-left: 4px solid #4CAF50;
padding: 1rem;
border-radius: 5px;
margin-top: 1rem;
}
.result-rejected {
background-color: #FFEBEE;
border-left: 4px solid #F44336;
padding: 1rem;
border-radius: 5px;
margin-top: 1rem;
}
/* Input widgets */
.stNumberInput, .stSelectbox {
margin-bottom: 1rem;
}
/* Footer */
.footer {
text-align: center;
margin-top: 2rem;
padding-top: 1rem;
border-top: 1px solid #EEEEEE;
font-size: 0.8rem;
color: #666666;
}
/* Divider */
.divider {
border-top: 1px solid #EEEEEE;
margin: 1.5rem 0;
}
/* Badge */
.badge {
display: inline-block;
background-color: var(--complementary-orange);
color: white;
padding: 0.25rem 0.5rem;
border-radius: 4px;
font-size: 0.8rem;
margin-left: 0.5rem;
}
</style>
""", unsafe_allow_html=True)
# App header with logo
col1, col2 = st.columns([1, 5])
with col1:
st.markdown('<div style="text-align: center; padding: 10px;"><span style="font-size: 40px;">🏦</span></div>', unsafe_allow_html=True)
with col2:
st.title("AI-Powered Loan Approval System")
st.markdown('<p style="color: #666;">Fast and reliable loan approval decisions</p>', unsafe_allow_html=True)
# Load the trained model from Hugging Face
@st.cache_resource
def load_model():
model_path = hf_hub_download(repo_id="ifiecas/LoanApproval-DT-v1.0", filename="best_pruned_dt.pkl")
return joblib.load(model_path)
model = load_model()
# Create tabs for better organization
tab1, tab2 = st.tabs(["Loan Application", "About the System"])
with tab1:
# Personal Information Section
st.markdown('<div class="section-card"><h3>Personal Information</h3>', unsafe_allow_html=True)
col1, col2 = st.columns(2)
with col1:
gender = st.selectbox("Gender", ["Male", "Female"])
education = st.selectbox("Education Level", ["Graduate", "Under Graduate"])
with col2:
marital_status = st.selectbox("Marital Status", ["Married", "Not Married"])
number_of_dependents = st.number_input("Number of Dependents", min_value=0, max_value=10, value=0)
self_employed = st.selectbox("Self-Employed", ["No", "Yes"])
st.markdown('</div>', unsafe_allow_html=True)
# Financial Details Section
st.markdown('<div class="section-card"><h3>Financial Details</h3>', unsafe_allow_html=True)
col1, col2 = st.columns(2)
with col1:
applicant_income = st.number_input("Monthly Income ($)", min_value=0, value=5000)
loan_amount = st.number_input("Loan Amount ($)", min_value=0, value=100000)
credit_history = st.selectbox("Credit History Status", [1, 0],
format_func=lambda x: "No existing unsettled loans (1)" if x == 1 else "Have unsettled loans (0)")
with col2:
coapplicant_income = st.number_input("Co-Applicant's Income ($)", min_value=0)
loan_term = st.slider("Loan Term (months)", min_value=12, max_value=360, value=180, step=12)
location = st.selectbox("Property Location", ["Urban", "Semiurban", "Rural"])
st.markdown('</div>', unsafe_allow_html=True)
# Summary section
st.markdown('<div class="section-card"><h3>Application Summary</h3>', unsafe_allow_html=True)
total_income = applicant_income + coapplicant_income
# Metrics already shown above with monthly payment
# Calculate monthly payment (simplified calculation)
# Convert loan term to years for calculation
loan_term_years = loan_term / 12
# Simple monthly payment calculation (approximation)
interest_rate = 0.05 # Assuming 5% annual interest rate
monthly_interest = interest_rate / 12
num_payments = loan_term
# Monthly payment using the loan amortization formula
if monthly_interest == 0:
monthly_payment = loan_amount / num_payments
else:
monthly_payment = loan_amount * (monthly_interest * (1 + monthly_interest) ** num_payments) / \
((1 + monthly_interest) ** num_payments - 1)
# Calculate proper Debt-to-Income ratio (monthly payment / monthly income)
dti = (monthly_payment / total_income) if total_income > 0 else 0
dti_percent = dti * 100
col1, col2, col3 = st.columns(3)
col1.metric("Total Monthly Income", f"${total_income:,}")
col2.metric("Estimated Monthly Payment", f"${monthly_payment:.2f}")
col3.metric("Loan Term", f"{loan_term//12} years")
# Show DTI with visual gauge instead of raw number
st.markdown("<h4>Debt-to-Income Assessment</h4>", unsafe_allow_html=True)
# Cap the displayed percentage at 100% for the visual
display_percent = min(dti_percent, 100)
# Determine the status and color
if dti_percent <= 36:
dti_status = "Good"
dti_color = "#4CAF50" # Green
emoji = "✅"
elif dti_percent <= 43:
dti_status = "Moderate"
dti_color = "#FF9800" # Orange
emoji = "⚠️"
else:
dti_status = "High"
dti_color = "#F44336" # Red
emoji = "❗"
# Create a visual progress bar
st.markdown(f"""
<div style="margin-bottom: 10px;">
<div style="background-color: #e0e0e0; border-radius: 10px; height: 20px; width: 100%;">
<div style="background-color: {dti_color}; width: {display_percent}%; height: 20px; border-radius: 10px;"></div>
</div>
<div style="display: flex; justify-content: space-between; font-size: 0.8rem;">
<span>0%</span>
<span>50%</span>
<span>100%+</span>
</div>
</div>
""", unsafe_allow_html=True)
# Show a simple, friendly interpretation
if dti_percent > 100:
st.markdown(f"""
<div style="padding: 10px; background-color: #FFEBEE; border-radius: 5px; margin-bottom: 15px;">
{emoji} <strong>Your monthly loan payment would be {dti_percent/100:.1f}× your monthly income</strong>
<p style="margin: 5px 0 0 0; font-size: 0.9rem;">Most lenders look for a ratio below 43% (0.43× your income)</p>
</div>
""", unsafe_allow_html=True)
else:
st.markdown(f"""
<div style="padding: 10px; background-color: #F5F5F5; border-radius: 5px; margin-bottom: 15px;">
{emoji} <strong>Your monthly loan payment would be {dti_percent:.1f}% of your monthly income</strong>
<p style="margin: 5px 0 0 0; font-size: 0.9rem;">Most lenders look for this to be below 43%</p>
</div>
""", unsafe_allow_html=True)
st.markdown('</div>', unsafe_allow_html=True)
# Prediction button with enhanced styling
st.markdown('<div style="padding: 1.5rem 0;">', unsafe_allow_html=True)
predict_button = st.button("Check Loan Approval Status")
st.markdown('</div>', unsafe_allow_html=True)
def preprocess_input():
# Convert categorical inputs to numerical format based on encoding reference
gender_num = 0 if gender == "Male" else 1
marital_status_num = 0 if marital_status == "Not Married" else 1
education_num = 0 if education == "Under Graduate" else 1
self_employed_num = 0 if self_employed == "No" else 1
credit_history_num = credit_history # Already numerical (0,1)
# One-Hot Encoding for Location
location_semiurban = 1 if location == "Semiurban" else 0
location_urban = 1 if location == "Urban" else 0
# Convert Term from months to years
term_years = loan_term / 12
# Compute Derived Features
total_income = applicant_income + coapplicant_income # Sum of incomes
debt_to_income = loan_amount / total_income if total_income > 0 else 0 # Avoid divide by zero
credit_amount_interaction = loan_amount * credit_history_num # Interaction effect
income_term_ratio = total_income / term_years if term_years > 0 else 0 # Avoid divide by zero
# Return array with all 16 features
return np.array([[
gender_num, marital_status_num, number_of_dependents, education_num, self_employed_num,
applicant_income, coapplicant_income, loan_amount, credit_history_num,
total_income, debt_to_income, location_semiurban, location_urban, term_years,
credit_amount_interaction, income_term_ratio
]])
# Display prediction
if predict_button:
with st.spinner("Processing your application..."):
input_data = preprocess_input()
prediction = model.predict(input_data)
# Show result with enhanced styling
if prediction[0] == 1:
st.markdown("""
<div class="result-approved">
<h3 style="color: #2E7D32;">✅ Loan Approved</h3>
<p>Congratulations! Based on your information, you're eligible for this loan.</p>
</div>
""", unsafe_allow_html=True)
else:
st.markdown("""
<div class="result-rejected">
<h3 style="color: #C62828;">❌ Loan Not Approved</h3>
<p>Unfortunately, based on your current information, we cannot approve your loan application.</p>
<p>Consider improving your credit score or applying with a co-applicant with higher income.</p>
</div>
""", unsafe_allow_html=True)
with tab2:
st.markdown("""
<div class="section-card">
<h3>About the Loan Approval System</h3>
<p>This AI-powered system uses advanced machine learning algorithms to determine loan approval eligibility.</p>
</div>
""", unsafe_allow_html=True)
st.markdown("<h4>How it works</h4>", unsafe_allow_html=True)
st.write("The system analyzes various factors including:")
st.markdown("""
- Personal and financial information
- Credit history status
- Loan amount and term
- Income and employment status
""")
st.write("All decisions are made automatically using a trained decision tree model that has learned from thousands of previous loan applications.")
st.markdown('<div class="section-card">', unsafe_allow_html=True)
st.markdown("<h3>Features</h3>", unsafe_allow_html=True)
st.write("Our system provides:")
st.markdown("""
- Instant loan approval decisions
- Transparent evaluation process
- Secure data handling
""")
st.markdown('</div>', unsafe_allow_html=True)
# Footer
st.markdown("""
<div class="footer">
<p>© 2025 AI-Powered Loan Approval System | <a href="#" style="color: #7950F2;">Terms of Service</a> | <a href="#" style="color: #7950F2;">Privacy Policy</a></p>
</div>
""", unsafe_allow_html=True) |