Spaces:
Running
Running
File size: 16,943 Bytes
143340f 651cf86 42691c2 651cf86 143340f 651cf86 b771194 651cf86 b771194 651cf86 42691c2 651cf86 4522e90 4dd3861 4522e90 651cf86 b1a80f7 4dd3861 6c0b217 663c0e0 6c0b217 663c0e0 6c0b217 663c0e0 6c0b217 4dd3861 6c0b217 4dd3861 6c0b217 663c0e0 6c0b217 4dd3861 6c0b217 651cf86 4dd3861 651cf86 b771194 651cf86 4dd3861 651cf86 b771194 0d29fbd b771194 651cf86 4dd3861 651cf86 4dd3861 651cf86 4dd3861 651cf86 4dd3861 651cf86 4dd3861 651cf86 42691c2 4dd3861 42691c2 4dd3861 42691c2 4dd3861 42691c2 4dd3861 42691c2 651cf86 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 |
import streamlit as st
import joblib
import numpy as np
from huggingface_hub import hf_hub_download
# Page configuration
st.set_page_config(
page_title="Loan Approval System",
page_icon="🏦",
layout="centered",
initial_sidebar_state="collapsed"
)
# Custom CSS for styling with the specified color theme
st.markdown("""
<style>
/* Color Theme */
:root {
--primary-purple: #7950F2;
--primary-purple-light: #9775F3;
--primary-purple-dark: #5F3DC4;
--complementary-orange: #FF5E3A;
--complementary-orange-light: #FF8A6C;
--light-gray: #F8F9FA;
--dark-gray: #343A40;
}
/* Main containers */
.main .block-container {
padding: 2rem;
border-radius: 10px;
background-color: white;
box-shadow: 0 4px 12px rgba(0, 0, 0, 0.05);
}
/* Font family */
body, .stMarkdown, p, h1, h2, h3, h4, h5, h6, .stButton, .stSelectbox, .stNumberInput {
font-family: 'Helvetica', 'Arial', sans-serif !important;
}
/* Headers */
h1, h2, h3 {
color: var(--primary-purple-dark);
}
/* Custom cards for sections */
.section-card {
background-color: var(--light-gray);
border-radius: 8px;
padding: 1.5rem;
margin-bottom: 1.5rem;
border-left: 4px solid var(--primary-purple);
}
/* Button styling */
.stButton > button {
background-color: var(--primary-purple);
color: white;
border: none;
border-radius: 5px;
padding: 0.5rem 1rem;
font-weight: bold;
width: 100%;
transition: all 0.3s;
}
.stButton > button:hover {
background-color: var(--primary-purple-dark);
transform: translateY(-2px);
box-shadow: 0 4px 8px rgba(0, 0, 0, 0.1);
}
/* Result styling */
.result-approved {
background-color: #E8F5E9;
border-left: 4px solid #4CAF50;
padding: 1rem;
border-radius: 5px;
margin-top: 1rem;
}
.result-rejected {
background-color: #FFEBEE;
border-left: 4px solid #F44336;
padding: 1rem;
border-radius: 5px;
margin-top: 1rem;
}
/* Input widgets */
.stNumberInput, .stSelectbox {
margin-bottom: 1rem;
}
/* Footer */
.footer {
text-align: center;
margin-top: 2rem;
padding-top: 1rem;
border-top: 1px solid #EEEEEE;
font-size: 0.8rem;
color: #666666;
}
/* Divider */
.divider {
border-top: 1px solid #EEEEEE;
margin: 1.5rem 0;
}
/* Badge */
.badge {
display: inline-block;
background-color: var(--complementary-orange);
color: white;
padding: 0.25rem 0.5rem;
border-radius: 4px;
font-size: 0.8rem;
margin-left: 0.5rem;
}
</style>
""", unsafe_allow_html=True)
# App header with logo
col1, col2 = st.columns([1, 5])
with col1:
st.markdown('<div style="text-align: center; padding: 10px;"><span style="font-size: 40px;">🏦</span></div>', unsafe_allow_html=True)
with col2:
st.title("AI-Powered Loan Approval System")
st.markdown('<p style="color: #666;">Fast and reliable loan approval decisions</p>', unsafe_allow_html=True)
# Load the trained model from Hugging Face
@st.cache_resource
def load_model():
model_path = hf_hub_download(repo_id="ifiecas/LoanApproval-DT-v1.0", filename="best_pruned_dt.pkl")
return joblib.load(model_path)
model = load_model()
# Initialize session state for restart functionality
if 'restart_clicked' not in st.session_state:
st.session_state.restart_clicked = False
# Create tabs for better organization
tab1, tab2 = st.tabs(["Loan Application", "About the System"])
with tab1:
# Reset all form values if restart was clicked
if st.session_state.restart_clicked:
st.session_state.restart_clicked = False # Reset flag
# Add any other reset logic here if needed
# Note: Streamlit will reset most inputs automatically on rerun
# Personal Information Section
st.markdown('<div class="section-card"><h3>Personal Information</h3>', unsafe_allow_html=True)
col1, col2 = st.columns(2)
with col1:
gender = st.selectbox("Gender", ["Male", "Female"])
education = st.selectbox("Education Level", ["Graduate", "Under Graduate"])
with col2:
marital_status = st.selectbox("Marital Status", ["Married", "Not Married"])
number_of_dependents = st.number_input("Number of Dependents", min_value=0, max_value=10, value=0)
self_employed = st.selectbox("Self-Employed", ["No", "Yes"])
st.markdown('</div>', unsafe_allow_html=True)
# Financial Details Section
st.markdown('<div class="section-card"><h3>Financial Details</h3>', unsafe_allow_html=True)
col1, col2 = st.columns(2)
with col1:
applicant_income = st.number_input("Monthly Income ($)", min_value=0, value=5000)
loan_amount = st.number_input("Loan Amount ($)", min_value=0, value=100000)
credit_history = st.selectbox("Credit History Status", [1, 0],
format_func=lambda x: "No existing unsettled loans (1)" if x == 1 else "Have unsettled loans (0)")
with col2:
coapplicant_income = st.number_input("Co-Applicant's Income ($)", min_value=0)
loan_term = st.slider("Loan Term (months)", min_value=12, max_value=360, value=180, step=12)
location = st.selectbox("Property Location", ["Urban", "Semiurban", "Rural"])
st.markdown('</div>', unsafe_allow_html=True)
# Summary section
st.markdown('<div class="section-card"><h3>Application Summary</h3>', unsafe_allow_html=True)
total_income = applicant_income + coapplicant_income
# Calculate monthly payment (simplified calculation)
interest_rate = 0.05 # Assuming 5% annual interest rate
monthly_interest = interest_rate / 12
num_payments = loan_term
# Monthly payment using the loan amortization formula
if monthly_interest == 0 or num_payments == 0:
monthly_payment = 0
else:
monthly_payment = loan_amount * (monthly_interest * (1 + monthly_interest) ** num_payments) / \
((1 + monthly_interest) ** num_payments - 1)
# Calculate proper Debt-to-Income ratio (monthly payment / monthly income)
dti = (monthly_payment / total_income) if total_income > 0 else 0
dti_percent = dti * 100
col1, col2, col3 = st.columns(3)
col1.metric("Total Monthly Income", f"${total_income:,}")
col2.metric("Estimated Monthly Payment", f"${monthly_payment:.2f}")
col3.metric("Loan Term", f"{loan_term//12} years")
# Create DTI visualization section
st.markdown("<h4>Debt-to-Income Assessment</h4>", unsafe_allow_html=True)
# Cap the displayed percentage at 100% for the visual
display_percent = min(dti_percent, 100)
# Determine the status and color
if dti_percent <= 36:
dti_status = "Good"
dti_color = "#4CAF50" # Green
emoji = "✅"
elif dti_percent <= 43:
dti_status = "Moderate"
dti_color = "#FF9800" # Orange
emoji = "⚠️"
else:
dti_status = "High"
dti_color = "#F44336" # Red
emoji = "❗"
# Create a visual progress bar
st.markdown(f"""
<div style="margin-bottom: 10px;">
<div style="background-color: #e0e0e0; border-radius: 10px; height: 20px; width: 100%;">
<div style="background-color: {dti_color}; width: {display_percent}%; height: 20px; border-radius: 10px;"></div>
</div>
<div style="display: flex; justify-content: space-between; font-size: 0.8rem;">
<span>0%</span>
<span>50%</span>
<span>100%+</span>
</div>
</div>
""", unsafe_allow_html=True)
# Show a simple explanation of DTI with actual values
if dti_percent > 100:
st.markdown(f"""
<div style="padding: 10px; background-color: #FFEBEE; border-radius: 5px; margin-bottom: 15px;">
{emoji} <strong>Your monthly payment (${monthly_payment:.2f}) would be {dti_percent/100:.1f}× your monthly income (${total_income:,})</strong>
<p style="margin: 5px 0 0 0; font-size: 0.9rem;">Most lenders require this to be below 43% for approval</p>
</div>
""", unsafe_allow_html=True)
else:
st.markdown(f"""
<div style="padding: 10px; background-color: #F5F5F5; border-radius: 5px; margin-bottom: 15px;">
{emoji} <strong>Your monthly payment (${monthly_payment:.2f}) would be {dti_percent:.1f}% of your monthly income (${total_income:,})</strong>
<p style="margin: 5px 0 0 0; font-size: 0.9rem;">Most lenders require this to be below 43% for approval</p>
</div>
""", unsafe_allow_html=True)
# Add eligibility check section
st.markdown('<h4>Loan Eligibility Check</h4>', unsafe_allow_html=True)
eligibility_issues = []
# Check minimum income threshold (example: $1500/month)
if total_income < 1500:
eligibility_issues.append("⚠️ Total monthly income below minimum requirement ($1,500)")
# Check if DTI is too high (above 43% is typically problematic)
if dti_percent > 43:
eligibility_issues.append("⚠️ Debt-to-income ratio exceeds maximum threshold (43%)")
# Credit history is critical
if credit_history == 0:
eligibility_issues.append("⚠️ Existing unsettled loans may affect approval odds")
# Display eligibility issues if any
if eligibility_issues:
st.markdown('<div style="background-color:#FFF3E0;padding:10px;border-radius:5px;margin-bottom:15px;">', unsafe_allow_html=True)
st.markdown("<p><strong>Potential eligibility concerns:</strong></p>", unsafe_allow_html=True)
for issue in eligibility_issues:
st.markdown(f"<p>{issue}</p>", unsafe_allow_html=True)
st.markdown("</div>", unsafe_allow_html=True)
else:
st.markdown('<div style="background-color:#E8F5E9;padding:10px;border-radius:5px;margin-bottom:15px;">', unsafe_allow_html=True)
st.markdown("<p>✅ <strong>No obvious eligibility concerns</strong></p>", unsafe_allow_html=True)
st.markdown("</div>", unsafe_allow_html=True)
st.markdown('</div>', unsafe_allow_html=True)
# Prediction and restart buttons
col1, col2 = st.columns([3, 1])
with col1:
predict_button = st.button("Check Loan Approval Status", use_container_width=True)
with col2:
restart_button = st.button("🔄 Restart", use_container_width=True,
help="Reset all form fields and start over")
def preprocess_input():
# Convert categorical inputs to numerical format based on encoding reference
gender_num = 0 if gender == "Male" else 1
marital_status_num = 0 if marital_status == "Not Married" else 1
education_num = 0 if education == "Under Graduate" else 1
self_employed_num = 0 if self_employed == "No" else 1
credit_history_num = credit_history # Already numerical (0,1)
# One-Hot Encoding for Location
location_semiurban = 1 if location == "Semiurban" else 0
location_urban = 1 if location == "Urban" else 0
# Convert Term from months to years
term_years = loan_term / 12
# Compute Derived Features - use the same monthly payment calculated above
debt_to_income = monthly_payment / total_income if total_income > 0 else 0
credit_amount_interaction = loan_amount * credit_history_num # Interaction effect
income_term_ratio = total_income / term_years if term_years > 0 else 0 # Avoid divide by zero
# Return array with all 16 features
return np.array([[
gender_num, marital_status_num, number_of_dependents, education_num, self_employed_num,
applicant_income, coapplicant_income, loan_amount, credit_history_num,
total_income, debt_to_income, location_semiurban, location_urban, term_years,
credit_amount_interaction, income_term_ratio
]])
# Handle restart button click
if restart_button:
st.session_state.restart_clicked = True
st.rerun() # Using st.rerun() instead of st.experimental_rerun()
# Display prediction
if predict_button:
with st.spinner("Processing your application..."):
input_data = preprocess_input()
prediction = model.predict(input_data)
# Apply additional rules to override the model in certain cases
manual_rejection = False
rejection_reason = ""
# Rule-based rejections that override the model
if total_income < 1500:
manual_rejection = True
rejection_reason = "Insufficient income (below $1,500 monthly minimum)"
elif dti_percent > 50: # Very high DTI is an automatic rejection
manual_rejection = True
rejection_reason = "Debt-to-income ratio too high (exceeds 50%)"
elif credit_history == 0 and dti_percent > 35:
manual_rejection = True
rejection_reason = "Combination of unsettled loans and high debt-to-income ratio"
# Final decision combines model prediction and manual eligibility checks
final_approval = (prediction[0] == 1) and not manual_rejection
# Show result with enhanced styling
if final_approval:
st.markdown("""
<div class="result-approved">
<h3 style="color: #2E7D32;">✅ Loan Approved</h3>
<p>Congratulations! Based on your information, you're eligible for this loan.</p>
</div>
""", unsafe_allow_html=True)
else:
st.markdown(f"""
<div class="result-rejected">
<h3 style="color: #C62828;">❌ Loan Not Approved</h3>
<p>Unfortunately, based on your current information, we cannot approve your loan application.</p>
<p><strong>Primary reason:</strong> {rejection_reason if manual_rejection else "Multiple factors considered by our approval algorithm"}</p>
<p>Consider improving your credit score, reducing existing debt, or applying with a co-applicant with higher income.</p>
</div>
""", unsafe_allow_html=True)
with tab2:
st.markdown("""
<div class="section-card">
<h3>About the Loan Approval System</h3>
<p>This AI-powered system uses advanced machine learning algorithms to determine loan approval eligibility based on multiple factors.</p>
</div>
""", unsafe_allow_html=True)
st.markdown("<h4>How it works</h4>", unsafe_allow_html=True)
st.write("The system analyzes various factors including:")
st.markdown("""
- Personal and financial information
- Credit history status
- Loan amount and term
- Income and employment status
- Debt-to-income ratio
""")
st.write("""
Our decision engine combines a trained machine learning model with industry-standard lending criteria.
The system evaluates your application against patterns from thousands of previous loan applications
while also applying standard financial rules used by major lenders.
""")
st.markdown('<div class="section-card">', unsafe_allow_html=True)
st.markdown("<h3>Important Factors for Approval</h3>", unsafe_allow_html=True)
st.write("To maximize your chances of approval:")
st.markdown("""
- Maintain a debt-to-income ratio below 43%
- Have sufficient monthly income (minimum $1,500)
- Clear existing unsettled loans when possible
- Consider adding a co-applicant to strengthen your application
""")
st.markdown('</div>', unsafe_allow_html=True)
st.markdown('<div class="section-card">', unsafe_allow_html=True)
st.markdown("<h3>Key Features</h3>", unsafe_allow_html=True)
st.write("Our system provides:")
st.markdown("""
- Instant loan approval decisions
- Transparent evaluation process
- Detailed eligibility assessment
- Secure data handling
""")
st.markdown('</div>', unsafe_allow_html=True)
# Footer
st.markdown("""
<div class="footer">
<p>© 2025 AI-Powered Loan Approval System | <a href="#" style="color: #7950F2;">Terms of Service</a> | <a href="#" style="color: #7950F2;">Privacy Policy</a></p>
</div>
""", unsafe_allow_html=True) |