File size: 16,943 Bytes
143340f
 
 
 
 
651cf86
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
42691c2
 
 
 
 
651cf86
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
143340f
651cf86
 
 
 
 
 
 
b771194
 
 
 
651cf86
 
 
 
b771194
 
 
 
 
 
 
651cf86
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
42691c2
 
651cf86
 
 
 
 
 
 
 
 
 
 
 
 
4522e90
 
 
 
 
 
4dd3861
 
4522e90
 
 
 
 
 
651cf86
 
b1a80f7
 
 
 
 
4dd3861
6c0b217
663c0e0
6c0b217
 
 
 
663c0e0
6c0b217
 
 
663c0e0
6c0b217
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4dd3861
6c0b217
 
 
4dd3861
 
6c0b217
 
663c0e0
6c0b217
 
4dd3861
 
6c0b217
 
651cf86
4dd3861
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
651cf86
 
b771194
 
 
 
 
 
 
 
 
651cf86
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4dd3861
 
651cf86
 
 
 
 
 
 
 
 
 
 
b771194
 
 
0d29fbd
b771194
651cf86
 
 
 
 
 
4dd3861
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
651cf86
4dd3861
651cf86
 
 
 
 
 
 
4dd3861
651cf86
 
 
4dd3861
 
651cf86
 
 
 
 
 
 
4dd3861
651cf86
 
42691c2
 
 
 
 
 
 
 
4dd3861
 
 
 
 
 
 
42691c2
 
4dd3861
 
 
 
 
 
 
 
 
 
42691c2
 
4dd3861
42691c2
 
 
 
4dd3861
42691c2
 
 
651cf86
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
import streamlit as st
import joblib
import numpy as np
from huggingface_hub import hf_hub_download

# Page configuration
st.set_page_config(
    page_title="Loan Approval System",
    page_icon="🏦",
    layout="centered",
    initial_sidebar_state="collapsed"
)

# Custom CSS for styling with the specified color theme
st.markdown("""
<style>
    /* Color Theme */
    :root {
        --primary-purple: #7950F2;
        --primary-purple-light: #9775F3;
        --primary-purple-dark: #5F3DC4;
        --complementary-orange: #FF5E3A;
        --complementary-orange-light: #FF8A6C;
        --light-gray: #F8F9FA;
        --dark-gray: #343A40;
    }
    
    /* Main containers */
    .main .block-container {
        padding: 2rem;
        border-radius: 10px;
        background-color: white;
        box-shadow: 0 4px 12px rgba(0, 0, 0, 0.05);
    }
    
    /* Font family */
    body, .stMarkdown, p, h1, h2, h3, h4, h5, h6, .stButton, .stSelectbox, .stNumberInput {
        font-family: 'Helvetica', 'Arial', sans-serif !important;
    }
    
    /* Headers */
    h1, h2, h3 {
        color: var(--primary-purple-dark);
    }
    
    /* Custom cards for sections */
    .section-card {
        background-color: var(--light-gray);
        border-radius: 8px;
        padding: 1.5rem;
        margin-bottom: 1.5rem;
        border-left: 4px solid var(--primary-purple);
    }
    
    /* Button styling */
    .stButton > button {
        background-color: var(--primary-purple);
        color: white;
        border: none;
        border-radius: 5px;
        padding: 0.5rem 1rem;
        font-weight: bold;
        width: 100%;
        transition: all 0.3s;
    }
    .stButton > button:hover {
        background-color: var(--primary-purple-dark);
        transform: translateY(-2px);
        box-shadow: 0 4px 8px rgba(0, 0, 0, 0.1);
    }
    
    /* Result styling */
    .result-approved {
        background-color: #E8F5E9;
        border-left: 4px solid #4CAF50;
        padding: 1rem;
        border-radius: 5px;
        margin-top: 1rem;
    }
    .result-rejected {
        background-color: #FFEBEE;
        border-left: 4px solid #F44336;
        padding: 1rem;
        border-radius: 5px;
        margin-top: 1rem;
    }
    
    /* Input widgets */
    .stNumberInput, .stSelectbox {
        margin-bottom: 1rem;
    }
    
    /* Footer */
    .footer {
        text-align: center;
        margin-top: 2rem;
        padding-top: 1rem;
        border-top: 1px solid #EEEEEE;
        font-size: 0.8rem;
        color: #666666;
    }
    
    /* Divider */
    .divider {
        border-top: 1px solid #EEEEEE;
        margin: 1.5rem 0;
    }
    
    /* Badge */
    .badge {
        display: inline-block;
        background-color: var(--complementary-orange);
        color: white;
        padding: 0.25rem 0.5rem;
        border-radius: 4px;
        font-size: 0.8rem;
        margin-left: 0.5rem;
    }
</style>
""", unsafe_allow_html=True)

# App header with logo
col1, col2 = st.columns([1, 5])
with col1:
    st.markdown('<div style="text-align: center; padding: 10px;"><span style="font-size: 40px;">🏦</span></div>', unsafe_allow_html=True)
with col2:
    st.title("AI-Powered Loan Approval System")
    st.markdown('<p style="color: #666;">Fast and reliable loan approval decisions</p>', unsafe_allow_html=True)

# Load the trained model from Hugging Face
@st.cache_resource
def load_model():
    model_path = hf_hub_download(repo_id="ifiecas/LoanApproval-DT-v1.0", filename="best_pruned_dt.pkl")
    return joblib.load(model_path)

model = load_model()

# Initialize session state for restart functionality
if 'restart_clicked' not in st.session_state:
    st.session_state.restart_clicked = False

# Create tabs for better organization
tab1, tab2 = st.tabs(["Loan Application", "About the System"])

with tab1:
    # Reset all form values if restart was clicked
    if st.session_state.restart_clicked:
        st.session_state.restart_clicked = False  # Reset flag
        
        # Add any other reset logic here if needed
        # Note: Streamlit will reset most inputs automatically on rerun
    
    # Personal Information Section
    st.markdown('<div class="section-card"><h3>Personal Information</h3>', unsafe_allow_html=True)
    
    col1, col2 = st.columns(2)
    with col1:
        gender = st.selectbox("Gender", ["Male", "Female"])
        education = st.selectbox("Education Level", ["Graduate", "Under Graduate"])
    
    with col2:
        marital_status = st.selectbox("Marital Status", ["Married", "Not Married"])
        number_of_dependents = st.number_input("Number of Dependents", min_value=0, max_value=10, value=0)
    
    self_employed = st.selectbox("Self-Employed", ["No", "Yes"])
    st.markdown('</div>', unsafe_allow_html=True)
    
    # Financial Details Section
    st.markdown('<div class="section-card"><h3>Financial Details</h3>', unsafe_allow_html=True)
    
    col1, col2 = st.columns(2)
    with col1:
        applicant_income = st.number_input("Monthly Income ($)", min_value=0, value=5000)
        loan_amount = st.number_input("Loan Amount ($)", min_value=0, value=100000)
        credit_history = st.selectbox("Credit History Status", [1, 0], 
                                     format_func=lambda x: "No existing unsettled loans (1)" if x == 1 else "Have unsettled loans (0)")
    
    with col2:
        coapplicant_income = st.number_input("Co-Applicant's Income ($)", min_value=0)
        loan_term = st.slider("Loan Term (months)", min_value=12, max_value=360, value=180, step=12)
        location = st.selectbox("Property Location", ["Urban", "Semiurban", "Rural"])
    
    st.markdown('</div>', unsafe_allow_html=True)
    
    # Summary section
    st.markdown('<div class="section-card"><h3>Application Summary</h3>', unsafe_allow_html=True)
    
    total_income = applicant_income + coapplicant_income
    
    # Calculate monthly payment (simplified calculation)
    interest_rate = 0.05  # Assuming 5% annual interest rate
    monthly_interest = interest_rate / 12
    num_payments = loan_term
    
    # Monthly payment using the loan amortization formula
    if monthly_interest == 0 or num_payments == 0:
        monthly_payment = 0
    else:
        monthly_payment = loan_amount * (monthly_interest * (1 + monthly_interest) ** num_payments) / \
                        ((1 + monthly_interest) ** num_payments - 1)
    
    # Calculate proper Debt-to-Income ratio (monthly payment / monthly income)
    dti = (monthly_payment / total_income) if total_income > 0 else 0
    dti_percent = dti * 100
    
    col1, col2, col3 = st.columns(3)
    col1.metric("Total Monthly Income", f"${total_income:,}")
    col2.metric("Estimated Monthly Payment", f"${monthly_payment:.2f}")
    col3.metric("Loan Term", f"{loan_term//12} years")
    
    # Create DTI visualization section
    st.markdown("<h4>Debt-to-Income Assessment</h4>", unsafe_allow_html=True)
    
    # Cap the displayed percentage at 100% for the visual
    display_percent = min(dti_percent, 100)
    
    # Determine the status and color
    if dti_percent <= 36:
        dti_status = "Good"
        dti_color = "#4CAF50"  # Green
        emoji = "✅"
    elif dti_percent <= 43:
        dti_status = "Moderate"
        dti_color = "#FF9800"  # Orange
        emoji = "⚠️"
    else:
        dti_status = "High"
        dti_color = "#F44336"  # Red
        emoji = "❗"
    
    # Create a visual progress bar
    st.markdown(f"""
    <div style="margin-bottom: 10px;">
        <div style="background-color: #e0e0e0; border-radius: 10px; height: 20px; width: 100%;">
            <div style="background-color: {dti_color}; width: {display_percent}%; height: 20px; border-radius: 10px;"></div>
        </div>
        <div style="display: flex; justify-content: space-between; font-size: 0.8rem;">
            <span>0%</span>
            <span>50%</span>
            <span>100%+</span>
        </div>
    </div>
    """, unsafe_allow_html=True)
    
    # Show a simple explanation of DTI with actual values
    if dti_percent > 100:
        st.markdown(f"""
        <div style="padding: 10px; background-color: #FFEBEE; border-radius: 5px; margin-bottom: 15px;">
            {emoji} <strong>Your monthly payment (${monthly_payment:.2f}) would be {dti_percent/100:.1f}× your monthly income (${total_income:,})</strong>
            <p style="margin: 5px 0 0 0; font-size: 0.9rem;">Most lenders require this to be below 43% for approval</p>
        </div>
        """, unsafe_allow_html=True)
    else:
        st.markdown(f"""
        <div style="padding: 10px; background-color: #F5F5F5; border-radius: 5px; margin-bottom: 15px;">
            {emoji} <strong>Your monthly payment (${monthly_payment:.2f}) would be {dti_percent:.1f}% of your monthly income (${total_income:,})</strong>
            <p style="margin: 5px 0 0 0; font-size: 0.9rem;">Most lenders require this to be below 43% for approval</p>
        </div>
        """, unsafe_allow_html=True)
    
    # Add eligibility check section
    st.markdown('<h4>Loan Eligibility Check</h4>', unsafe_allow_html=True)
    
    eligibility_issues = []
    
    # Check minimum income threshold (example: $1500/month)
    if total_income < 1500:
        eligibility_issues.append("⚠️ Total monthly income below minimum requirement ($1,500)")
    
    # Check if DTI is too high (above 43% is typically problematic)
    if dti_percent > 43:
        eligibility_issues.append("⚠️ Debt-to-income ratio exceeds maximum threshold (43%)")
    
    # Credit history is critical
    if credit_history == 0:
        eligibility_issues.append("⚠️ Existing unsettled loans may affect approval odds")
    
    # Display eligibility issues if any
    if eligibility_issues:
        st.markdown('<div style="background-color:#FFF3E0;padding:10px;border-radius:5px;margin-bottom:15px;">', unsafe_allow_html=True)
        st.markdown("<p><strong>Potential eligibility concerns:</strong></p>", unsafe_allow_html=True)
        for issue in eligibility_issues:
            st.markdown(f"<p>{issue}</p>", unsafe_allow_html=True)
        st.markdown("</div>", unsafe_allow_html=True)
    else:
        st.markdown('<div style="background-color:#E8F5E9;padding:10px;border-radius:5px;margin-bottom:15px;">', unsafe_allow_html=True)
        st.markdown("<p>✅ <strong>No obvious eligibility concerns</strong></p>", unsafe_allow_html=True)
        st.markdown("</div>", unsafe_allow_html=True)
    
    st.markdown('</div>', unsafe_allow_html=True)
    
    # Prediction and restart buttons
    col1, col2 = st.columns([3, 1])
    
    with col1:
        predict_button = st.button("Check Loan Approval Status", use_container_width=True)
    
    with col2:
        restart_button = st.button("🔄 Restart", use_container_width=True, 
                                 help="Reset all form fields and start over")
    
    def preprocess_input():
        # Convert categorical inputs to numerical format based on encoding reference
        gender_num = 0 if gender == "Male" else 1
        marital_status_num = 0 if marital_status == "Not Married" else 1
        education_num = 0 if education == "Under Graduate" else 1
        self_employed_num = 0 if self_employed == "No" else 1
        credit_history_num = credit_history  # Already numerical (0,1)
        
        # One-Hot Encoding for Location
        location_semiurban = 1 if location == "Semiurban" else 0
        location_urban = 1 if location == "Urban" else 0
        
        # Convert Term from months to years
        term_years = loan_term / 12
        
        # Compute Derived Features - use the same monthly payment calculated above
        debt_to_income = monthly_payment / total_income if total_income > 0 else 0  
        credit_amount_interaction = loan_amount * credit_history_num  # Interaction effect
        income_term_ratio = total_income / term_years if term_years > 0 else 0  # Avoid divide by zero
        
        # Return array with all 16 features
        return np.array([[
            gender_num, marital_status_num, number_of_dependents, education_num, self_employed_num,
            applicant_income, coapplicant_income, loan_amount, credit_history_num,
            total_income, debt_to_income, location_semiurban, location_urban, term_years,
            credit_amount_interaction, income_term_ratio
        ]])
    
    # Handle restart button click
    if restart_button:
        st.session_state.restart_clicked = True
        st.rerun()  # Using st.rerun() instead of st.experimental_rerun()
    
    # Display prediction
    if predict_button:
        with st.spinner("Processing your application..."):
            input_data = preprocess_input()
            prediction = model.predict(input_data)
            
            # Apply additional rules to override the model in certain cases
            manual_rejection = False
            rejection_reason = ""
            
            # Rule-based rejections that override the model
            if total_income < 1500:
                manual_rejection = True
                rejection_reason = "Insufficient income (below $1,500 monthly minimum)"
            elif dti_percent > 50:  # Very high DTI is an automatic rejection
                manual_rejection = True
                rejection_reason = "Debt-to-income ratio too high (exceeds 50%)"
            elif credit_history == 0 and dti_percent > 35:
                manual_rejection = True  
                rejection_reason = "Combination of unsettled loans and high debt-to-income ratio"
            
            # Final decision combines model prediction and manual eligibility checks
            final_approval = (prediction[0] == 1) and not manual_rejection
            
            # Show result with enhanced styling
            if final_approval:
                st.markdown("""
                <div class="result-approved">
                    <h3 style="color: #2E7D32;">✅ Loan Approved</h3>
                    <p>Congratulations! Based on your information, you're eligible for this loan.</p>
                </div>
                """, unsafe_allow_html=True)
            else:
                st.markdown(f"""
                <div class="result-rejected">
                    <h3 style="color: #C62828;">❌ Loan Not Approved</h3>
                    <p>Unfortunately, based on your current information, we cannot approve your loan application.</p>
                    <p><strong>Primary reason:</strong> {rejection_reason if manual_rejection else "Multiple factors considered by our approval algorithm"}</p>
                    <p>Consider improving your credit score, reducing existing debt, or applying with a co-applicant with higher income.</p>
                </div>
                """, unsafe_allow_html=True)

with tab2:
    st.markdown("""
    <div class="section-card">
        <h3>About the Loan Approval System</h3>
        <p>This AI-powered system uses advanced machine learning algorithms to determine loan approval eligibility based on multiple factors.</p>
    </div>
    """, unsafe_allow_html=True)
    
    st.markdown("<h4>How it works</h4>", unsafe_allow_html=True)
    st.write("The system analyzes various factors including:")
    st.markdown("""
    - Personal and financial information
    - Credit history status
    - Loan amount and term
    - Income and employment status
    - Debt-to-income ratio
    """)
    
    st.write("""
    Our decision engine combines a trained machine learning model with industry-standard lending criteria. 
    The system evaluates your application against patterns from thousands of previous loan applications 
    while also applying standard financial rules used by major lenders.
    """)
    
    st.markdown('<div class="section-card">', unsafe_allow_html=True)
    st.markdown("<h3>Important Factors for Approval</h3>", unsafe_allow_html=True)
    st.write("To maximize your chances of approval:")
    st.markdown("""
    - Maintain a debt-to-income ratio below 43%
    - Have sufficient monthly income (minimum $1,500)
    - Clear existing unsettled loans when possible
    - Consider adding a co-applicant to strengthen your application
    """)
    st.markdown('</div>', unsafe_allow_html=True)
    
    st.markdown('<div class="section-card">', unsafe_allow_html=True)
    st.markdown("<h3>Key Features</h3>", unsafe_allow_html=True)
    st.write("Our system provides:")
    st.markdown("""
    - Instant loan approval decisions
    - Transparent evaluation process
    - Detailed eligibility assessment
    - Secure data handling
    """)
    st.markdown('</div>', unsafe_allow_html=True)

# Footer
st.markdown("""
<div class="footer">
    <p>© 2025 AI-Powered Loan Approval System | <a href="#" style="color: #7950F2;">Terms of Service</a> | <a href="#" style="color: #7950F2;">Privacy Policy</a></p>
</div>
""", unsafe_allow_html=True)