File size: 8,762 Bytes
8312ddd b5ba092 8312ddd d28c822 3cf3c0d b5ba092 cfb7ff1 b5ba092 d28c822 b5ba092 8f2167b fc4ac67 b5ba092 a0d6076 b5ba092 fc4ac67 b5ba092 fc4ac67 b5ba092 fc4ac67 b5ba092 fc4ac67 3cf3c0d b5ba092 fc4ac67 8f2167b fc4ac67 b5ba092 8f2167b 8312ddd 3cf3c0d b5ba092 8f2167b d28c822 8312ddd d28c822 8312ddd d28c822 8312ddd e9a9c89 8312ddd d28c822 8312ddd d28c822 8312ddd d28c822 8312ddd d28c822 8312ddd d28c822 8312ddd d28c822 8312ddd d28c822 8312ddd 8f2167b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 |
import cv2
import numpy as np
import pandas as pd
import gradio as gr
from skimage import morphology, segmentation
import matplotlib.pyplot as plt
from datetime import datetime
def enhanced_preprocessing(image):
"""Advanced image preprocessing pipeline"""
# Convert to LAB color space for better color separation
lab = cv2.cvtColor(image, cv2.COLOR_RGB2LAB)
# CLAHE on L-channel
l_channel = lab[:,:,0]
clahe = cv2.createCLAHE(clipLimit=3.0, tileGridSize=(8,8))
lab[:,:,0] = clahe.apply(l_channel)
# Convert back to RGB
enhanced = cv2.cvtColor(lab, cv2.COLOR_LAB2RGB)
# Edge-preserving smoothing
filtered = cv2.bilateralFilter(enhanced, 9, 75, 75)
return filtered
def detect_cells(image):
"""Advanced cell detection using multiple techniques"""
# Enhanced preprocessing
processed = enhanced_preprocessing(image)
# Convert to grayscale
gray = cv2.cvtColor(processed, cv2.COLOR_RGB2GRAY)
# Adaptive thresholding
binary = cv2.adaptiveThreshold(gray, 255,
cv2.ADAPTIVE_THRESH_GAUSSIAN_C,
cv2.THRESH_BINARY_INV, 21, 4)
# Morphological operations
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (5,5))
cleaned = morphology.area_opening(binary, area_threshold=128)
cleaned = cv2.morphologyEx(cleaned, cv2.MORPH_CLOSE, kernel, iterations=2)
# Watershed segmentation for overlapping cells
distance = cv2.distanceTransform(cleaned, cv2.DIST_L2, 3)
_, sure_fg = cv2.threshold(distance, 0.5*distance.max(), 255, 0)
sure_fg = np.uint8(sure_fg)
# Marker labeling
_, markers = cv2.connectedComponents(sure_fg)
markers += 1 # Add one to all labels
markers[cleaned == 0] = 0 # Set background to 0
# Apply watershed
segmented = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
markers = segmentation.watershed(segmented, markers)
# Find contours from markers
contours = []
for label in np.unique(markers):
if label < 1: # Skip background
continue
mask = np.zeros(gray.shape, dtype="uint8")
mask[markers == label] = 255
cnts, _ = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
contours.extend(cnts)
return contours, cleaned
def feature_analysis(contours, image):
"""Comprehensive feature extraction and validation"""
features = []
for i, contour in enumerate(contours, 1):
area = cv2.contourArea(contour)
perimeter = cv2.arcLength(contour, True)
# Improved circularity calculation
circularity = (4 * np.pi * area) / (perimeter**2 + 1e-6)
# Advanced shape validation
if 50 < area < 10000 and 0.4 < circularity < 1.2:
M = cv2.moments(contour)
if M["m00"] != 0:
cx = int(M["m10"] / M["m00"])
cy = int(M["m01"] / M["m00"])
# Convexity check
hull = cv2.convexHull(contour)
hull_area = cv2.contourArea(hull)
convexity = area / hull_area if hull_area > 0 else 0
features.append({
'Cell ID': i,
'Area (px²)': area,
'Perimeter (px)': perimeter,
'Circularity': round(circularity, 3),
'Convexity': round(convexity, 3),
'Centroid X': cx,
'Centroid Y': cy
})
return features
def visualize_results(image, contours, features):
"""Enhanced visualization with better annotations"""
vis_img = image.copy()
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
# Draw refined contours
for idx, feature in enumerate(features):
contour = contours[idx]
cv2.drawContours(vis_img, [contour], -1, (0, 255, 0), 2)
# Improved annotation placement
x, y = feature['Centroid X'], feature['Centroid Y']
cv2.putText(vis_img, str(feature['Cell ID']),
(x+5, y-5), cv2.FONT_HERSHEY_SIMPLEX,
0.6, (255, 255, 255), 3)
cv2.putText(vis_img, str(feature['Cell ID']),
(x+5, y-5), cv2.FONT_HERSHEY_SIMPLEX,
0.6, (0, 0, 255), 2)
# Add enhanced overlay
cv2.putText(vis_img, f"Cells Detected: {len(features)} | {timestamp}",
(10, 30), cv2.FONT_HERSHEY_SIMPLEX,
0.7, (0, 0, 0), 3)
cv2.putText(vis_img, f"Cells Detected: {len(features)} | {timestamp}",
(10, 30), cv2.FONT_HERSHEY_SIMPLEX,
0.7, (255, 255, 255), 2)
return vis_img
def process_image(image, transform_type):
"""Upgraded image processing pipeline"""
if image is None:
return None, None, None, None
try:
original = image.copy()
contours, mask = detect_cells(image)
features = feature_analysis(contours, image)
vis_img = visualize_results(image, contours, features)
# Create analysis plots
plt.style.use('seaborn-v0_8')
fig, ax = plt.subplots(2, 2, figsize=(15, 12))
fig.suptitle('Advanced Cell Analysis', fontsize=16)
df = pd.DataFrame(features)
if not df.empty:
ax[0,0].hist(df['Area (px²)'], bins=30, color='#1f77b4', ec='black')
ax[0,0].set_title('Area Distribution')
ax[0,1].scatter(df['Circularity'], df['Convexity'],
c=df['Area (px²)'], cmap='viridis', alpha=0.7)
ax[0,1].set_title('Shape Correlation')
ax[1,0].boxplot([df['Area (px²)'], df['Circularity']],
labels=['Area', 'Circularity'])
ax[1,0].set_title('Feature Distribution')
ax[1,1].hexbin(df['Centroid X'], df['Centroid Y'],
gridsize=20, cmap='plasma', bins='log')
ax[1,1].set_title('Spatial Distribution')
plt.tight_layout()
return (
vis_img,
apply_color_transformation(original, transform_type),
fig,
df
)
except Exception as e:
print(f"Error: {str(e)}")
return None, None, None, None
# Create Gradio interface
with gr.Blocks(title="Advanced Cell Analysis Tool", theme=gr.themes.Soft()) as demo:
gr.Markdown("""
# 🔬 Advanced Bioengineering Cell Analysis Tool
## Features
- 🔍 Automated cell detection and measurement
- 📊 Comprehensive statistical analysis
- 🎨 Multiple visualization options
- 📥 Downloadable results
## Author
- **Muhammad Ibrahim Qasmi**
- [LinkedIn](https://www.linkedin.com/in/muhammad-ibrahim-qasmi-9876a1297/)
""")
with gr.Row():
with gr.Column(scale=1):
input_image = gr.Image(
label="Upload Image",
type="numpy"
)
transform_type = gr.Dropdown(
choices=["Original", "Grayscale", "Binary", "CLAHE"],
value="Original",
label="Image Transform"
)
analyze_btn = gr.Button(
"Analyze Image",
variant="primary",
size="lg"
)
with gr.Column(scale=2):
with gr.Tabs():
with gr.Tab("Analysis Results"):
output_image = gr.Image(
label="Detected Cells"
)
gr.Markdown("*Green contours show detected cells, red numbers are cell IDs*")
with gr.Tab("Image Transformations"):
transformed_image = gr.Image(
label="Transformed Image"
)
gr.Markdown("*Select different transformations from the dropdown menu*")
with gr.Tab("Statistics"):
output_plot = gr.Plot(
label="Statistical Analysis"
)
gr.Markdown("*Hover over plots for detailed values*")
with gr.Tab("Data"):
output_table = gr.DataFrame(
label="Cell Features"
)
analyze_btn.click(
fn=process_image,
inputs=[input_image, transform_type],
outputs=[output_image, transformed_image, output_plot, output_table]
)
# Launch the demo
if __name__ == "__main__":
demo.launch() |