Update app.py
Browse files
app.py
CHANGED
@@ -3,130 +3,132 @@ import numpy as np
|
|
3 |
import pandas as pd
|
4 |
import gradio as gr
|
5 |
from skimage import measure, morphology
|
6 |
-
from skimage.segmentation import watershed
|
7 |
import matplotlib.pyplot as plt
|
8 |
from datetime import datetime
|
9 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
def apply_color_transformation(image, transform_type):
|
12 |
"""Apply different color transformations to the image"""
|
13 |
-
if len(image.shape) ==
|
14 |
-
image = cv2.cvtColor(image, cv2.
|
15 |
|
16 |
if transform_type == "Original":
|
17 |
-
return
|
18 |
elif transform_type == "Grayscale":
|
19 |
-
return cv2.cvtColor(image, cv2.
|
20 |
elif transform_type == "Binary":
|
21 |
-
gray = cv2.cvtColor(image, cv2.
|
22 |
_, binary = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY)
|
23 |
return binary
|
24 |
elif transform_type == "CLAHE":
|
25 |
-
gray = cv2.cvtColor(image, cv2.
|
26 |
clahe = cv2.createCLAHE(clipLimit=3.0, tileGridSize=(8,8))
|
27 |
return clahe.apply(gray)
|
28 |
return image
|
29 |
|
30 |
def process_image(image, transform_type):
|
31 |
-
"""Process uploaded image and extract cell features"""
|
32 |
if image is None:
|
33 |
return None, None, None, None
|
34 |
|
35 |
try:
|
36 |
-
# Store original image for
|
37 |
original_image = image.copy()
|
38 |
|
39 |
-
#
|
40 |
-
|
41 |
-
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
|
42 |
-
|
43 |
-
# Basic preprocessing
|
44 |
-
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
|
45 |
-
clahe = cv2.createCLAHE(clipLimit=3.0, tileGridSize=(8,8))
|
46 |
-
enhanced = clahe.apply(gray)
|
47 |
-
blurred = cv2.medianBlur(enhanced, 5)
|
48 |
-
|
49 |
-
# Thresholding
|
50 |
-
_, binary = cv2.threshold(blurred, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
|
51 |
-
|
52 |
-
# Noise removal and cell separation
|
53 |
-
kernel = np.ones((3,3), np.uint8)
|
54 |
-
opening = cv2.morphologyEx(binary, cv2.MORPH_OPEN, kernel, iterations=2)
|
55 |
-
|
56 |
-
# Sure background area
|
57 |
-
sure_bg = cv2.dilate(opening, kernel, iterations=3)
|
58 |
-
|
59 |
-
# Finding sure foreground area
|
60 |
-
dist_transform = cv2.distanceTransform(opening, cv2.DIST_L2, 5)
|
61 |
-
_, sure_fg = cv2.threshold(dist_transform, 0.5 * dist_transform.max(), 255, 0)
|
62 |
-
sure_fg = sure_fg.astype(np.uint8)
|
63 |
-
|
64 |
-
# Finding unknown region
|
65 |
-
unknown = cv2.subtract(sure_bg, sure_fg)
|
66 |
-
|
67 |
-
# Marker labelling
|
68 |
-
_, markers = cv2.connectedComponents(sure_fg)
|
69 |
-
markers = markers + 1
|
70 |
-
markers[unknown == 255] = 0
|
71 |
-
|
72 |
-
# Apply watershed
|
73 |
-
markers = cv2.watershed(image, markers)
|
74 |
|
75 |
# Extract features
|
76 |
features = []
|
77 |
-
for
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
88 |
|
89 |
# Create visualization
|
90 |
-
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
91 |
vis_img = image.copy()
|
|
|
92 |
|
93 |
-
# Draw contours
|
94 |
-
contours = measure.find_contours(markers, 0.5)
|
95 |
-
for contour in contours:
|
96 |
-
coords = np.array(contour).astype(int)
|
97 |
-
coords = coords[:, [1, 0]] # Swap x and y coordinates
|
98 |
-
coords = coords.reshape((-1, 1, 2))
|
99 |
-
cv2.polylines(vis_img, [coords], True, (0, 255, 0), 2)
|
100 |
-
|
101 |
-
# Add cell labels and measurements
|
102 |
for feature in features:
|
103 |
-
|
104 |
-
|
|
|
|
|
|
|
|
|
105 |
# White outline
|
106 |
cv2.putText(vis_img, str(feature['label']),
|
107 |
(x, y), cv2.FONT_HERSHEY_SIMPLEX,
|
108 |
-
0.5, (255,255,255), 2)
|
109 |
# Red text
|
110 |
cv2.putText(vis_img, str(feature['label']),
|
111 |
(x, y), cv2.FONT_HERSHEY_SIMPLEX,
|
112 |
-
0.5, (0,0,255), 1)
|
113 |
|
114 |
-
# Add timestamp
|
115 |
-
cv2.putText(vis_img, f"Analyzed: {timestamp}",
|
116 |
(10, 30), cv2.FONT_HERSHEY_SIMPLEX,
|
117 |
-
0.7, (255,255,255), 2)
|
118 |
|
119 |
-
# Create plots
|
120 |
plt.style.use('seaborn')
|
121 |
fig, axes = plt.subplots(2, 2, figsize=(15, 12))
|
122 |
-
fig.suptitle('Cell Analysis Results', fontsize=16, y=0.95)
|
123 |
|
124 |
df = pd.DataFrame(features)
|
125 |
if not df.empty:
|
126 |
# Distribution plots
|
127 |
df['area'].hist(ax=axes[0,0], bins=20, color='skyblue', edgecolor='black')
|
128 |
axes[0,0].set_title('Cell Size Distribution')
|
129 |
-
axes[0,0].set_xlabel('Area')
|
130 |
axes[0,0].set_ylabel('Count')
|
131 |
|
132 |
df['circularity'].hist(ax=axes[0,1], bins=20, color='lightgreen', edgecolor='black')
|
@@ -134,12 +136,11 @@ def process_image(image, transform_type):
|
|
134 |
axes[0,1].set_xlabel('Circularity')
|
135 |
axes[0,1].set_ylabel('Count')
|
136 |
|
137 |
-
# Scatter
|
138 |
-
axes[1,0].scatter(df['
|
139 |
-
|
140 |
-
axes[1,0].
|
141 |
-
axes[1,0].
|
142 |
-
axes[1,0].set_ylabel('Mean Intensity')
|
143 |
|
144 |
# Box plot
|
145 |
df.boxplot(column=['area', 'circularity'], ax=axes[1,1])
|
@@ -154,7 +155,7 @@ def process_image(image, transform_type):
|
|
154 |
transformed_image = apply_color_transformation(original_image, transform_type)
|
155 |
|
156 |
return (
|
157 |
-
|
158 |
transformed_image,
|
159 |
fig,
|
160 |
df
|
@@ -164,6 +165,8 @@ def process_image(image, transform_type):
|
|
164 |
print(f"Error processing image: {str(e)}")
|
165 |
return None, None, None, None
|
166 |
|
|
|
|
|
167 |
# Create Gradio interface
|
168 |
with gr.Blocks(title="Advanced Cell Analysis Tool", theme=gr.themes.Soft()) as demo:
|
169 |
gr.Markdown("""
|
|
|
3 |
import pandas as pd
|
4 |
import gradio as gr
|
5 |
from skimage import measure, morphology
|
|
|
6 |
import matplotlib.pyplot as plt
|
7 |
from datetime import datetime
|
8 |
+
|
9 |
+
def detect_blood_cells(image):
|
10 |
+
"""Specialized function for blood cell detection"""
|
11 |
+
# Convert to RGB if grayscale
|
12 |
+
if len(image.shape) == 2:
|
13 |
+
image = cv2.cvtColor(image, cv2.COLOR_GRAY2RGB)
|
14 |
+
|
15 |
+
# Convert to HSV color space
|
16 |
+
hsv = cv2.cvtColor(image, cv2.COLOR_RGB2HSV)
|
17 |
+
|
18 |
+
# Create mask for red blood cells
|
19 |
+
# Red color has two ranges in HSV
|
20 |
+
lower_red1 = np.array([0, 70, 50])
|
21 |
+
upper_red1 = np.array([10, 255, 255])
|
22 |
+
lower_red2 = np.array([170, 70, 50])
|
23 |
+
upper_red2 = np.array([180, 255, 255])
|
24 |
+
|
25 |
+
mask1 = cv2.inRange(hsv, lower_red1, upper_red1)
|
26 |
+
mask2 = cv2.inRange(hsv, lower_red2, upper_red2)
|
27 |
+
mask = mask1 + mask2
|
28 |
+
|
29 |
+
# Noise removal and smoothing
|
30 |
+
kernel = np.ones((3,3), np.uint8)
|
31 |
+
mask = cv2.morphologyEx(mask, cv2.MORPH_OPEN, kernel, iterations=2)
|
32 |
+
mask = cv2.morphologyEx(mask, cv2.MORPH_CLOSE, kernel, iterations=2)
|
33 |
+
|
34 |
+
# Find contours
|
35 |
+
contours, _ = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
36 |
+
|
37 |
+
return contours, mask
|
38 |
|
39 |
def apply_color_transformation(image, transform_type):
|
40 |
"""Apply different color transformations to the image"""
|
41 |
+
if len(image.shape) == 2:
|
42 |
+
image = cv2.cvtColor(image, cv2.COLOR_GRAY2RGB)
|
43 |
|
44 |
if transform_type == "Original":
|
45 |
+
return image
|
46 |
elif transform_type == "Grayscale":
|
47 |
+
return cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
|
48 |
elif transform_type == "Binary":
|
49 |
+
gray = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
|
50 |
_, binary = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY)
|
51 |
return binary
|
52 |
elif transform_type == "CLAHE":
|
53 |
+
gray = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
|
54 |
clahe = cv2.createCLAHE(clipLimit=3.0, tileGridSize=(8,8))
|
55 |
return clahe.apply(gray)
|
56 |
return image
|
57 |
|
58 |
def process_image(image, transform_type):
|
59 |
+
"""Process uploaded image and extract blood cell features"""
|
60 |
if image is None:
|
61 |
return None, None, None, None
|
62 |
|
63 |
try:
|
64 |
+
# Store original image for transformations
|
65 |
original_image = image.copy()
|
66 |
|
67 |
+
# Detect blood cells
|
68 |
+
contours, mask = detect_blood_cells(image)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
69 |
|
70 |
# Extract features
|
71 |
features = []
|
72 |
+
for i, contour in enumerate(contours, 1):
|
73 |
+
area = cv2.contourArea(contour)
|
74 |
+
# Filter out very small or very large regions
|
75 |
+
if 100 < area < 5000: # Adjust these thresholds based on your images
|
76 |
+
perimeter = cv2.arcLength(contour, True)
|
77 |
+
circularity = 4 * np.pi * area / (perimeter * perimeter) if perimeter > 0 else 0
|
78 |
+
|
79 |
+
# Only include if it's reasonably circular
|
80 |
+
if circularity > 0.7: # Adjust threshold as needed
|
81 |
+
M = cv2.moments(contour)
|
82 |
+
if M["m00"] != 0:
|
83 |
+
cx = int(M["m10"] / M["m00"])
|
84 |
+
cy = int(M["m01"] / M["m00"])
|
85 |
+
|
86 |
+
features.append({
|
87 |
+
'label': i,
|
88 |
+
'area': area,
|
89 |
+
'perimeter': perimeter,
|
90 |
+
'circularity': circularity,
|
91 |
+
'centroid_x': cx,
|
92 |
+
'centroid_y': cy
|
93 |
+
})
|
94 |
|
95 |
# Create visualization
|
|
|
96 |
vis_img = image.copy()
|
97 |
+
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
98 |
|
99 |
+
# Draw contours and labels
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
100 |
for feature in features:
|
101 |
+
contour = contours[feature['label']-1]
|
102 |
+
cv2.drawContours(vis_img, [contour], -1, (0, 255, 0), 2)
|
103 |
+
|
104 |
+
# Add cell labels
|
105 |
+
x = feature['centroid_x']
|
106 |
+
y = feature['centroid_y']
|
107 |
# White outline
|
108 |
cv2.putText(vis_img, str(feature['label']),
|
109 |
(x, y), cv2.FONT_HERSHEY_SIMPLEX,
|
110 |
+
0.5, (255, 255, 255), 2)
|
111 |
# Red text
|
112 |
cv2.putText(vis_img, str(feature['label']),
|
113 |
(x, y), cv2.FONT_HERSHEY_SIMPLEX,
|
114 |
+
0.5, (0, 0, 255), 1)
|
115 |
|
116 |
+
# Add timestamp and cell count
|
117 |
+
cv2.putText(vis_img, f"Analyzed: {timestamp} | Cells: {len(features)}",
|
118 |
(10, 30), cv2.FONT_HERSHEY_SIMPLEX,
|
119 |
+
0.7, (255, 255, 255), 2)
|
120 |
|
121 |
+
# Create analysis plots
|
122 |
plt.style.use('seaborn')
|
123 |
fig, axes = plt.subplots(2, 2, figsize=(15, 12))
|
124 |
+
fig.suptitle('Blood Cell Analysis Results', fontsize=16, y=0.95)
|
125 |
|
126 |
df = pd.DataFrame(features)
|
127 |
if not df.empty:
|
128 |
# Distribution plots
|
129 |
df['area'].hist(ax=axes[0,0], bins=20, color='skyblue', edgecolor='black')
|
130 |
axes[0,0].set_title('Cell Size Distribution')
|
131 |
+
axes[0,0].set_xlabel('Area (pixels)')
|
132 |
axes[0,0].set_ylabel('Count')
|
133 |
|
134 |
df['circularity'].hist(ax=axes[0,1], bins=20, color='lightgreen', edgecolor='black')
|
|
|
136 |
axes[0,1].set_xlabel('Circularity')
|
137 |
axes[0,1].set_ylabel('Count')
|
138 |
|
139 |
+
# Scatter plot
|
140 |
+
axes[1,0].scatter(df['area'], df['circularity'], alpha=0.6, c='purple')
|
141 |
+
axes[1,0].set_title('Area vs Circularity')
|
142 |
+
axes[1,0].set_xlabel('Area')
|
143 |
+
axes[1,0].set_ylabel('Circularity')
|
|
|
144 |
|
145 |
# Box plot
|
146 |
df.boxplot(column=['area', 'circularity'], ax=axes[1,1])
|
|
|
155 |
transformed_image = apply_color_transformation(original_image, transform_type)
|
156 |
|
157 |
return (
|
158 |
+
vis_img,
|
159 |
transformed_image,
|
160 |
fig,
|
161 |
df
|
|
|
165 |
print(f"Error processing image: {str(e)}")
|
166 |
return None, None, None, None
|
167 |
|
168 |
+
|
169 |
+
|
170 |
# Create Gradio interface
|
171 |
with gr.Blocks(title="Advanced Cell Analysis Tool", theme=gr.themes.Soft()) as demo:
|
172 |
gr.Markdown("""
|