Spaces:
Running
on
Zero
Running
on
Zero
#!/usr/bin/env python | |
from __future__ import annotations | |
import os | |
import pathlib | |
import sys | |
import cv2 | |
import gradio as gr | |
import numpy as np | |
import torch | |
sys.path.insert(0, "face_detection") | |
sys.path.insert(0, "face_alignment") | |
from ibug.face_alignment import FANPredictor | |
from ibug.face_detection import RetinaFacePredictor | |
DESCRIPTION = "# [ibug-group/face_alignment](https://github.com/ibug-group/face_alignment)" | |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") | |
detector = RetinaFacePredictor(threshold=0.8, device=device, model=RetinaFacePredictor.get_model("mobilenet0.25")) | |
model_names = [ | |
"2dfan2", | |
"2dfan4", | |
"2dfan2_alt", | |
] | |
models = {name: FANPredictor(device=device, model=FANPredictor.get_model(name)) for name in model_names} | |
def predict(image: np.ndarray, model_name: str, max_num_faces: int, landmark_score_threshold: int) -> np.ndarray: | |
model = models[model_name] | |
# RGB -> BGR | |
image = image[:, :, ::-1] | |
faces = detector(image, rgb=False) | |
if len(faces) == 0: | |
raise RuntimeError("No face was found.") | |
faces = sorted(list(faces), key=lambda x: -x[4])[:max_num_faces] | |
faces = np.asarray(faces) | |
landmarks, landmark_scores = model(image, faces, rgb=False) | |
res = image.copy() | |
for face, pts, scores in zip(faces, landmarks, landmark_scores): | |
box = np.round(face[:4]).astype(int) | |
cv2.rectangle(res, tuple(box[:2]), tuple(box[2:]), (0, 255, 0), 2) | |
for pt, score in zip(np.round(pts).astype(int), scores): | |
if score < landmark_score_threshold: | |
continue | |
cv2.circle(res, tuple(pt), 2, (0, 255, 0), cv2.FILLED) | |
return res[:, :, ::-1] | |
examples = [[path.as_posix(), model_names[0], 10, 0.2] for path in pathlib.Path("images").rglob("*.jpg")] | |
with gr.Blocks(css="style.css") as demo: | |
gr.Markdown(DESCRIPTION) | |
with gr.Row(): | |
with gr.Column(): | |
image = gr.Image(type="numpy", label="Input") | |
model_name = gr.Radio(model_names, type="value", value=model_names[0], label="Model") | |
max_num_faces = gr.Slider(1, 20, step=1, value=10, label="Max Number of Faces") | |
landmark_score_thrshold = gr.Slider(0, 1, step=0.05, value=0.2, label="Landmark Score Threshold") | |
run_button = gr.Button() | |
with gr.Column(): | |
result = gr.Image(label="Output") | |
gr.Examples( | |
examples=examples, | |
inputs=[image, model_name, max_num_faces, landmark_score_thrshold], | |
outputs=result, | |
fn=predict, | |
cache_examples=os.getenv("CACHE_EXAMPLES") == "1", | |
) | |
run_button.click( | |
fn=predict, | |
inputs=[image, model_name, max_num_faces, landmark_score_thrshold], | |
outputs=result, | |
api_name="predict", | |
) | |
if __name__ == "__main__": | |
demo.queue(max_size=20).launch() | |