Spaces:
Running
on
Zero
Running
on
Zero
Update
Browse files- .gitattributes +1 -0
- .gitignore +0 -1
- .pre-commit-config.yaml +60 -0
- .vscode/settings.json +30 -0
- README.md +1 -1
- app.py +42 -108
- images/README.md +3 -0
- images/pexels-ksenia-chernaya-8535230.jpg +3 -0
- requirements.txt +4 -4
- style.css +11 -0
.gitattributes
CHANGED
@@ -26,3 +26,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
26 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
27 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
28 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
26 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
27 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
28 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
29 |
+
*.jpg filter=lfs diff=lfs merge=lfs -text
|
.gitignore
DELETED
@@ -1 +0,0 @@
|
|
1 |
-
images
|
|
|
|
.pre-commit-config.yaml
ADDED
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
repos:
|
2 |
+
- repo: https://github.com/pre-commit/pre-commit-hooks
|
3 |
+
rev: v4.5.0
|
4 |
+
hooks:
|
5 |
+
- id: check-executables-have-shebangs
|
6 |
+
- id: check-json
|
7 |
+
- id: check-merge-conflict
|
8 |
+
- id: check-shebang-scripts-are-executable
|
9 |
+
- id: check-toml
|
10 |
+
- id: check-yaml
|
11 |
+
- id: end-of-file-fixer
|
12 |
+
- id: mixed-line-ending
|
13 |
+
args: ["--fix=lf"]
|
14 |
+
- id: requirements-txt-fixer
|
15 |
+
- id: trailing-whitespace
|
16 |
+
- repo: https://github.com/myint/docformatter
|
17 |
+
rev: v1.7.5
|
18 |
+
hooks:
|
19 |
+
- id: docformatter
|
20 |
+
args: ["--in-place"]
|
21 |
+
- repo: https://github.com/pycqa/isort
|
22 |
+
rev: 5.13.2
|
23 |
+
hooks:
|
24 |
+
- id: isort
|
25 |
+
args: ["--profile", "black"]
|
26 |
+
- repo: https://github.com/pre-commit/mirrors-mypy
|
27 |
+
rev: v1.8.0
|
28 |
+
hooks:
|
29 |
+
- id: mypy
|
30 |
+
args: ["--ignore-missing-imports"]
|
31 |
+
additional_dependencies:
|
32 |
+
[
|
33 |
+
"types-python-slugify",
|
34 |
+
"types-requests",
|
35 |
+
"types-PyYAML",
|
36 |
+
"types-pytz",
|
37 |
+
]
|
38 |
+
- repo: https://github.com/psf/black
|
39 |
+
rev: 24.2.0
|
40 |
+
hooks:
|
41 |
+
- id: black
|
42 |
+
language_version: python3.10
|
43 |
+
args: ["--line-length", "119"]
|
44 |
+
- repo: https://github.com/kynan/nbstripout
|
45 |
+
rev: 0.7.1
|
46 |
+
hooks:
|
47 |
+
- id: nbstripout
|
48 |
+
args:
|
49 |
+
[
|
50 |
+
"--extra-keys",
|
51 |
+
"metadata.interpreter metadata.kernelspec cell.metadata.pycharm",
|
52 |
+
]
|
53 |
+
- repo: https://github.com/nbQA-dev/nbQA
|
54 |
+
rev: 1.7.1
|
55 |
+
hooks:
|
56 |
+
- id: nbqa-black
|
57 |
+
- id: nbqa-pyupgrade
|
58 |
+
args: ["--py37-plus"]
|
59 |
+
- id: nbqa-isort
|
60 |
+
args: ["--float-to-top"]
|
.vscode/settings.json
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"editor.formatOnSave": true,
|
3 |
+
"files.insertFinalNewline": false,
|
4 |
+
"[python]": {
|
5 |
+
"editor.defaultFormatter": "ms-python.black-formatter",
|
6 |
+
"editor.formatOnType": true,
|
7 |
+
"editor.codeActionsOnSave": {
|
8 |
+
"source.organizeImports": "explicit"
|
9 |
+
}
|
10 |
+
},
|
11 |
+
"[jupyter]": {
|
12 |
+
"files.insertFinalNewline": false
|
13 |
+
},
|
14 |
+
"black-formatter.args": [
|
15 |
+
"--line-length=119"
|
16 |
+
],
|
17 |
+
"isort.args": ["--profile", "black"],
|
18 |
+
"flake8.args": [
|
19 |
+
"--max-line-length=119"
|
20 |
+
],
|
21 |
+
"ruff.lint.args": [
|
22 |
+
"--line-length=119"
|
23 |
+
],
|
24 |
+
"notebook.output.scrolling": true,
|
25 |
+
"notebook.formatOnCellExecution": true,
|
26 |
+
"notebook.formatOnSave.enabled": true,
|
27 |
+
"notebook.codeActionsOnSave": {
|
28 |
+
"source.organizeImports": "explicit"
|
29 |
+
}
|
30 |
+
}
|
README.md
CHANGED
@@ -4,7 +4,7 @@ emoji: 🔥
|
|
4 |
colorFrom: pink
|
5 |
colorTo: indigo
|
6 |
sdk: gradio
|
7 |
-
sdk_version:
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
---
|
|
|
4 |
colorFrom: pink
|
5 |
colorTo: indigo
|
6 |
sdk: gradio
|
7 |
+
sdk_version: 4.19.2
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
---
|
app.py
CHANGED
@@ -2,79 +2,34 @@
|
|
2 |
|
3 |
from __future__ import annotations
|
4 |
|
5 |
-
import argparse
|
6 |
-
import functools
|
7 |
import os
|
8 |
import pathlib
|
9 |
import sys
|
10 |
-
import tarfile
|
11 |
|
12 |
import cv2
|
13 |
import gradio as gr
|
14 |
-
import huggingface_hub
|
15 |
import numpy as np
|
16 |
import torch
|
17 |
|
18 |
-
sys.path.insert(0,
|
19 |
-
sys.path.insert(0,
|
20 |
|
21 |
from ibug.face_alignment import FANPredictor
|
22 |
from ibug.face_detection import RetinaFacePredictor
|
23 |
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
parser.add_argument('--port', type=int)
|
38 |
-
parser.add_argument('--disable-queue',
|
39 |
-
dest='enable_queue',
|
40 |
-
action='store_false')
|
41 |
-
parser.add_argument('--allow-flagging', type=str, default='never')
|
42 |
-
return parser.parse_args()
|
43 |
-
|
44 |
-
|
45 |
-
def load_sample_images() -> list[pathlib.Path]:
|
46 |
-
image_dir = pathlib.Path('images')
|
47 |
-
if not image_dir.exists():
|
48 |
-
image_dir.mkdir()
|
49 |
-
dataset_repo = 'hysts/input-images'
|
50 |
-
filenames = ['001.tar']
|
51 |
-
for name in filenames:
|
52 |
-
path = huggingface_hub.hf_hub_download(dataset_repo,
|
53 |
-
name,
|
54 |
-
repo_type='dataset',
|
55 |
-
use_auth_token=TOKEN)
|
56 |
-
with tarfile.open(path) as f:
|
57 |
-
f.extractall(image_dir.as_posix())
|
58 |
-
return sorted(image_dir.rglob('*.jpg'))
|
59 |
-
|
60 |
-
|
61 |
-
def load_detector(device: torch.device) -> RetinaFacePredictor:
|
62 |
-
model = RetinaFacePredictor(
|
63 |
-
threshold=0.8,
|
64 |
-
device=device,
|
65 |
-
model=RetinaFacePredictor.get_model('mobilenet0.25'))
|
66 |
-
return model
|
67 |
-
|
68 |
-
|
69 |
-
def load_model(model_name: str, device: torch.device) -> FANPredictor:
|
70 |
-
model = FANPredictor(device=device,
|
71 |
-
model=FANPredictor.get_model(model_name))
|
72 |
-
return model
|
73 |
-
|
74 |
-
|
75 |
-
def predict(image: np.ndarray, model_name: str, max_num_faces: int,
|
76 |
-
landmark_score_threshold: int, detector: RetinaFacePredictor,
|
77 |
-
models: dict[str, FANPredictor]) -> np.ndarray:
|
78 |
model = models[model_name]
|
79 |
|
80 |
# RGB -> BGR
|
@@ -82,7 +37,7 @@ def predict(image: np.ndarray, model_name: str, max_num_faces: int,
|
|
82 |
|
83 |
faces = detector(image, rgb=False)
|
84 |
if len(faces) == 0:
|
85 |
-
raise RuntimeError(
|
86 |
faces = sorted(list(faces), key=lambda x: -x[4])[:max_num_faces]
|
87 |
faces = np.asarray(faces)
|
88 |
landmarks, landmark_scores = model(image, faces, rgb=False)
|
@@ -99,54 +54,33 @@ def predict(image: np.ndarray, model_name: str, max_num_faces: int,
|
|
99 |
return res[:, :, ::-1]
|
100 |
|
101 |
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
func = functools.update_wrapper(func, predict)
|
117 |
-
|
118 |
-
image_paths = load_sample_images()
|
119 |
-
examples = [[path.as_posix(), model_names[0], 10, 0.2]
|
120 |
-
for path in image_paths]
|
121 |
-
|
122 |
-
gr.Interface(
|
123 |
-
func,
|
124 |
-
[
|
125 |
-
gr.inputs.Image(type='numpy', label='Input'),
|
126 |
-
gr.inputs.Radio(model_names,
|
127 |
-
type='value',
|
128 |
-
default=model_names[0],
|
129 |
-
label='Model'),
|
130 |
-
gr.inputs.Slider(
|
131 |
-
1, 20, step=1, default=10, label='Max Number of Faces'),
|
132 |
-
gr.inputs.Slider(
|
133 |
-
0, 1, step=0.05, default=0.2,
|
134 |
-
label='Landmark Score Threshold'),
|
135 |
-
],
|
136 |
-
gr.outputs.Image(type='numpy', label='Output'),
|
137 |
examples=examples,
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
)
|
149 |
|
150 |
|
151 |
-
if __name__ ==
|
152 |
-
|
|
|
2 |
|
3 |
from __future__ import annotations
|
4 |
|
|
|
|
|
5 |
import os
|
6 |
import pathlib
|
7 |
import sys
|
|
|
8 |
|
9 |
import cv2
|
10 |
import gradio as gr
|
|
|
11 |
import numpy as np
|
12 |
import torch
|
13 |
|
14 |
+
sys.path.insert(0, "face_detection")
|
15 |
+
sys.path.insert(0, "face_alignment")
|
16 |
|
17 |
from ibug.face_alignment import FANPredictor
|
18 |
from ibug.face_detection import RetinaFacePredictor
|
19 |
|
20 |
+
DESCRIPTION = "# [ibug-group/face_alignment](https://github.com/ibug-group/face_alignment)"
|
21 |
+
|
22 |
+
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
23 |
+
detector = RetinaFacePredictor(threshold=0.8, device=device, model=RetinaFacePredictor.get_model("mobilenet0.25"))
|
24 |
+
model_names = [
|
25 |
+
"2dfan2",
|
26 |
+
"2dfan4",
|
27 |
+
"2dfan2_alt",
|
28 |
+
]
|
29 |
+
models = {name: FANPredictor(device=device, model=FANPredictor.get_model(name)) for name in model_names}
|
30 |
+
|
31 |
+
|
32 |
+
def predict(image: np.ndarray, model_name: str, max_num_faces: int, landmark_score_threshold: int) -> np.ndarray:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
model = models[model_name]
|
34 |
|
35 |
# RGB -> BGR
|
|
|
37 |
|
38 |
faces = detector(image, rgb=False)
|
39 |
if len(faces) == 0:
|
40 |
+
raise RuntimeError("No face was found.")
|
41 |
faces = sorted(list(faces), key=lambda x: -x[4])[:max_num_faces]
|
42 |
faces = np.asarray(faces)
|
43 |
landmarks, landmark_scores = model(image, faces, rgb=False)
|
|
|
54 |
return res[:, :, ::-1]
|
55 |
|
56 |
|
57 |
+
examples = [[path.as_posix(), model_names[0], 10, 0.2] for path in pathlib.Path("images").rglob("*.jpg")]
|
58 |
+
|
59 |
+
with gr.Blocks(css="style.css") as demo:
|
60 |
+
gr.Markdown(DESCRIPTION)
|
61 |
+
with gr.Row():
|
62 |
+
with gr.Column():
|
63 |
+
image = gr.Image(type="numpy", label="Input")
|
64 |
+
model_name = gr.Radio(model_names, type="value", value=model_names[0], label="Model")
|
65 |
+
max_num_faces = gr.Slider(1, 20, step=1, value=10, label="Max Number of Faces")
|
66 |
+
landmark_score_thrshold = gr.Slider(0, 1, step=0.05, value=0.2, label="Landmark Score Threshold")
|
67 |
+
run_button = gr.Button()
|
68 |
+
with gr.Column():
|
69 |
+
result = gr.Image(label="Output")
|
70 |
+
gr.Examples(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
examples=examples,
|
72 |
+
inputs=[image, model_name, max_num_faces, landmark_score_thrshold],
|
73 |
+
outputs=result,
|
74 |
+
fn=predict,
|
75 |
+
cache_examples=os.getenv("CACHE_EXAMPLES") == "1",
|
76 |
+
)
|
77 |
+
run_button.click(
|
78 |
+
fn=predict,
|
79 |
+
inputs=[image, model_name, max_num_faces, landmark_score_thrshold],
|
80 |
+
outputs=result,
|
81 |
+
api_name="predict",
|
82 |
)
|
83 |
|
84 |
|
85 |
+
if __name__ == "__main__":
|
86 |
+
demo.queue(max_size=20).launch()
|
images/README.md
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
These images are from the following public domain:
|
2 |
+
|
3 |
+
- https://www.pexels.com/photo/children-with-her-students-holding-different-color-bells-8535230/
|
images/pexels-ksenia-chernaya-8535230.jpg
ADDED
![]() |
Git LFS Details
|
requirements.txt
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
-
numpy==1.
|
2 |
-
opencv-python-headless==4.
|
3 |
-
torch==
|
4 |
-
torchvision==0.
|
|
|
1 |
+
numpy==1.26.4
|
2 |
+
opencv-python-headless==4.9.0.80
|
3 |
+
torch==2.0.1
|
4 |
+
torchvision==0.15.2
|
style.css
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
h1 {
|
2 |
+
text-align: center;
|
3 |
+
display: block;
|
4 |
+
}
|
5 |
+
|
6 |
+
#duplicate-button {
|
7 |
+
margin: auto;
|
8 |
+
color: #fff;
|
9 |
+
background: #1565c0;
|
10 |
+
border-radius: 100vh;
|
11 |
+
}
|