PE3R / modules /dust3r /cloud_opt /optimizer.py.bak.1216
hujiecpp's picture
init project
1b65314
raw
history blame
23 kB
# Copyright (C) 2024-present Naver Corporation. All rights reserved.
# Licensed under CC BY-NC-SA 4.0 (non-commercial use only).
#
# --------------------------------------------------------
# Main class for the implementation of the global alignment
# --------------------------------------------------------
import numpy as np
import torch
import torch.nn as nn
from dust3r.cloud_opt.base_opt import BasePCOptimizer
from dust3r.utils.geometry import xy_grid, geotrf
from dust3r.utils.device import to_cpu, to_numpy
import torch.nn.functional as F
class PointCloudOptimizer(BasePCOptimizer):
""" Optimize a global scene, given a list of pairwise observations.
Graph node: images
Graph edges: observations = (pred1, pred2)
"""
def __init__(self, *args, optimize_pp=False, focal_break=20, **kwargs):
super().__init__(*args, **kwargs)
self.has_im_poses = True # by definition of this class
self.focal_break = focal_break
# adding thing to optimize
self.im_depthmaps = nn.ParameterList(torch.randn(H, W)/10-3 for H, W in self.imshapes) # log(depth)
self.im_poses = nn.ParameterList(self.rand_pose(self.POSE_DIM) for _ in range(self.n_imgs)) # camera poses
self.im_focals = nn.ParameterList(torch.FloatTensor(
[self.focal_break*np.log(max(H, W))]) for H, W in self.imshapes) # camera intrinsics
self.im_pp = nn.ParameterList(torch.zeros((2,)) for _ in range(self.n_imgs)) # camera intrinsics
self.im_pp.requires_grad_(optimize_pp)
self.imshape = self.imshapes[0]
im_areas = [h*w for h, w in self.imshapes]
self.max_area = max(im_areas)
# adding thing to optimize
self.im_depthmaps = ParameterStack(self.im_depthmaps, is_param=True, fill=self.max_area)
self.im_poses = ParameterStack(self.im_poses, is_param=True)
self.im_focals = ParameterStack(self.im_focals, is_param=True)
self.im_pp = ParameterStack(self.im_pp, is_param=True)
self.register_buffer('_pp', torch.tensor([(w/2, h/2) for h, w in self.imshapes]))
self.register_buffer('_grid', ParameterStack(
[xy_grid(W, H, device=self.device) for H, W in self.imshapes], fill=self.max_area))
# pre-compute pixel weights
self.register_buffer('_weight_i', ParameterStack(
[self.conf_trf(self.conf_i[i_j]) for i_j in self.str_edges], fill=self.max_area))
self.register_buffer('_weight_j', ParameterStack(
[self.conf_trf(self.conf_j[i_j]) for i_j in self.str_edges], fill=self.max_area))
# precompute aa
self.register_buffer('_stacked_pred_i', ParameterStack(self.pred_i, self.str_edges, fill=self.max_area))
self.register_buffer('_stacked_pred_j', ParameterStack(self.pred_j, self.str_edges, fill=self.max_area))
self.register_buffer('_ei', torch.tensor([i for i, j in self.edges]))
self.register_buffer('_ej', torch.tensor([j for i, j in self.edges]))
self.total_area_i = sum([im_areas[i] for i, j in self.edges])
self.total_area_j = sum([im_areas[j] for i, j in self.edges])
def _check_all_imgs_are_selected(self, msk):
assert np.all(self._get_msk_indices(msk) == np.arange(self.n_imgs)), 'incomplete mask!'
def preset_pose(self, known_poses, pose_msk=None): # cam-to-world
self._check_all_imgs_are_selected(pose_msk)
if isinstance(known_poses, torch.Tensor) and known_poses.ndim == 2:
known_poses = [known_poses]
for idx, pose in zip(self._get_msk_indices(pose_msk), known_poses):
if self.verbose:
print(f' (setting pose #{idx} = {pose[:3,3]})')
self._no_grad(self._set_pose(self.im_poses, idx, torch.tensor(pose)))
# normalize scale if there's less than 1 known pose
n_known_poses = sum((p.requires_grad is False) for p in self.im_poses)
self.norm_pw_scale = (n_known_poses <= 1)
self.im_poses.requires_grad_(False)
self.norm_pw_scale = False
def preset_focal(self, known_focals, msk=None):
self._check_all_imgs_are_selected(msk)
for idx, focal in zip(self._get_msk_indices(msk), known_focals):
if self.verbose:
print(f' (setting focal #{idx} = {focal})')
self._no_grad(self._set_focal(idx, focal))
self.im_focals.requires_grad_(False)
def preset_principal_point(self, known_pp, msk=None):
self._check_all_imgs_are_selected(msk)
for idx, pp in zip(self._get_msk_indices(msk), known_pp):
if self.verbose:
print(f' (setting principal point #{idx} = {pp})')
self._no_grad(self._set_principal_point(idx, pp))
self.im_pp.requires_grad_(False)
def _get_msk_indices(self, msk):
if msk is None:
return range(self.n_imgs)
elif isinstance(msk, int):
return [msk]
elif isinstance(msk, (tuple, list)):
return self._get_msk_indices(np.array(msk))
elif msk.dtype in (bool, torch.bool, np.bool_):
assert len(msk) == self.n_imgs
return np.where(msk)[0]
elif np.issubdtype(msk.dtype, np.integer):
return msk
else:
raise ValueError(f'bad {msk=}')
def _no_grad(self, tensor):
assert tensor.requires_grad, 'it must be True at this point, otherwise no modification occurs'
def _set_focal(self, idx, focal, force=False):
param = self.im_focals[idx]
if param.requires_grad or force: # can only init a parameter not already initialized
param.data[:] = self.focal_break * np.log(focal)
return param
def get_focals(self):
log_focals = torch.stack(list(self.im_focals), dim=0)
return (log_focals / self.focal_break).exp()
def get_known_focal_mask(self):
return torch.tensor([not (p.requires_grad) for p in self.im_focals])
def _set_principal_point(self, idx, pp, force=False):
param = self.im_pp[idx]
H, W = self.imshapes[idx]
if param.requires_grad or force: # can only init a parameter not already initialized
param.data[:] = to_cpu(to_numpy(pp) - (W/2, H/2)) / 10
return param
def get_principal_points(self):
return self._pp + 10 * self.im_pp
def get_intrinsics(self):
K = torch.zeros((self.n_imgs, 3, 3), device=self.device)
focals = self.get_focals().flatten()
K[:, 0, 0] = K[:, 1, 1] = focals
K[:, :2, 2] = self.get_principal_points()
K[:, 2, 2] = 1
return K
def get_im_poses(self): # cam to world
cam2world = self._get_poses(self.im_poses)
return cam2world
def _set_depthmap(self, idx, depth, force=False):
depth = _ravel_hw(depth, self.max_area)
param = self.im_depthmaps[idx]
if param.requires_grad or force: # can only init a parameter not already initialized
param.data[:] = depth.log().nan_to_num(neginf=0)
return param
def get_depthmaps(self, raw=False):
res = self.im_depthmaps.exp()
if not raw:
res = [dm[:h*w].view(h, w) for dm, (h, w) in zip(res, self.imshapes)]
return res
def depth_to_pts3d(self):
# Get depths and projection params if not provided
focals = self.get_focals()
pp = self.get_principal_points()
im_poses = self.get_im_poses()
depth = self.get_depthmaps(raw=True)
# get pointmaps in camera frame
rel_ptmaps = _fast_depthmap_to_pts3d(depth, self._grid, focals, pp=pp)
# project to world frame
return geotrf(im_poses, rel_ptmaps)
def get_pts3d(self, raw=False):
res = self.depth_to_pts3d()
if not raw:
res = [dm[:h*w].view(h, w, 3) for dm, (h, w) in zip(res, self.imshapes)]
return res
# def cosine_similarity_batch(self, semantic_features, query_pixels):
# # 扩展维度进行广播计算余弦相似度
# query_pixels = query_pixels.unsqueeze(1) # [B, 1, C]
# semantic_features = semantic_features.unsqueeze(0) # [1, H, W, C]
# cos_sim = F.cosine_similarity(query_pixels, semantic_features, dim=-1) # [B, H, W]
# return cos_sim
# def semantic_loss(self, semantic_features, predicted_depth, window_size=32, stride=16, lambda_semantic=0.1):
# # 获取图像的尺寸
# height, width, channels = semantic_features.shape
# # 执行矩阵化处理
# ret_loss = 0.0
# cnt = 0
# for i in range(0, height, stride):
# for j in range(0, width, stride):
# window_semantic = semantic_features[i:min(i+window_size,height), j:min(j+window_size,width), :]
# window_depth = predicted_depth[i:min(i+window_size,height), j:min(j+window_size,width)]
# # print(window_semantic.shape, window_depth.shape)
# window_semantic = window_semantic.reshape(-1, channels)
# window_depth = window_depth.reshape(-1, 1)
# cos_sim = torch.matmul(window_semantic, window_semantic.t())
# dep_dif = torch.abs(window_depth - window_depth.reshape(1, -1))
# # print(torch.sum(cos_sim * dep_dif))
# ret_loss += torch.mean(cos_sim * dep_dif)
# cnt += 1
# return ret_loss / cnt
# def segmap_loss(self, predicted_depth, seg_map):
# ret_loss = 0.0
# cnt = 0
# seg_map = seg_map.view(-1)
# predicted_depth = predicted_depth.view(-1, 1)
# unique_groups = torch.unique(seg_map)
# for group in unique_groups:
# # print(group)
# if group == -1:
# continue
# group_indices = (seg_map == group).nonzero(as_tuple=True)[0]
# if len(group_indices) > 0:
# now_feat = predicted_depth[group_indices]
# dep_dif = torch.abs(now_feat - now_feat.reshape(1, -1))
# ret_loss += torch.mean(dep_dif)
# cnt += 1
# return ret_loss / cnt if cnt > 0 else ret_loss
# def spatial_smoothness_loss(self, point_map, semantic_map):
# """
# 计算空间平滑性损失,使得同一语义类别的相邻像素点空间位置变化不剧烈。
# 使用八邻域。
# 参数:
# - point_map: (H, W, 3),表示每个像素点的空间坐标 (x, y, z)
# - semantic_map: (H, W, 1),每个像素点的语义标签
# 返回:
# - 总损失值
# """
# # 获取图像的高度和宽度
# H, W = semantic_map.shape
# # 将点图和语义图调整为二维形式
# point_map = point_map.view(-1, 3) # (H * W, 3)
# semantic_map = semantic_map.view(-1) # (H * W,)
# # 创建图像的索引
# row_idx, col_idx = torch.meshgrid(torch.arange(H), torch.arange(W))
# row_idx = row_idx.flatten()
# col_idx = col_idx.flatten()
# # 定义八邻域偏移
# neighbor_offsets = torch.tensor([[-1, 0], [1, 0], [0, -1], [0, 1],
# [-1, -1], [-1, 1], [1, -1], [1, 1]], dtype=torch.long)
# # 存储损失值
# total_loss = 0.0
# # 对每个像素点进行计算
# for offset in neighbor_offsets:
# # 计算邻居位置
# neighbor_row = row_idx + offset[0]
# neighbor_col = col_idx + offset[1]
# # 确保邻居在图像内部
# valid_mask = (neighbor_row >= 0) & (neighbor_row < H) & (neighbor_col >= 0) & (neighbor_col < W)
# valid_row = neighbor_row[valid_mask]
# valid_col = neighbor_col[valid_mask]
# # 获取有效像素点的索引
# idx = valid_mask.nonzero(as_tuple=True)[0]
# neighbor_idx = valid_row * W + valid_col
# # 获取相邻像素点的语义标签和空间坐标
# sem_i = semantic_map[idx]
# sem_j = semantic_map[neighbor_idx]
# p_i = point_map[idx]
# p_j = point_map[neighbor_idx]
# # 计算空间坐标差异的平方
# distance = torch.sum((p_i - p_j) ** 2, dim=1)
# # 如果相邻像素属于同一语义类别,计算损失
# loss_mask = (sem_i == sem_j)
# total_loss += torch.sum(loss_mask * distance)
# # 平均损失
# return total_loss / point_map.size(0)
def spatial_smoothness_loss_multi_image(self, point_maps, semantic_maps, confidence_maps):
"""
计算空间平滑性损失,考虑多张图像中属于同一物体的像素点的空间平滑性。
参数:
- point_maps: (B, H, W, 3),每张图像的空间坐标 (x, y, z) B是batch大小
- semantic_maps: (B, H, W, 1),每张图像的语义标签
返回:
- 总损失值
"""
B, H, W = semantic_maps.shape
# 将点图和语义图调整为二维形式
point_maps = point_maps.view(B, -1, 3) # (B, H*W, 3)
semantic_maps = semantic_maps.view(B, -1) # (B, H*W)
confidence_maps = confidence_maps.view(B, -1) # (B, H*W)
# 存储损失值
total_loss = 0.0
# 对每张图像中的每个像素进行计算
for b in range(B):
# 获取当前图像的点图和语义图
point_map = point_maps[b]
semantic_map = semantic_maps[b]
confidence_map = confidence_maps[b]
# 创建图像的索引
row_idx, col_idx = torch.meshgrid(torch.arange(H), torch.arange(W))
row_idx = row_idx.flatten()
col_idx = col_idx.flatten()
# 定义八邻域偏移
neighbor_offsets = torch.tensor([[-1, 0], [1, 0], [0, -1], [0, 1],
[-1, -1], [-1, 1], [1, -1], [1, 1]], dtype=torch.long)
# 对每个像素点进行计算(仅在当前图像内计算邻域关系)
for offset in neighbor_offsets:
# 计算邻居位置
neighbor_row = row_idx + offset[0]
neighbor_col = col_idx + offset[1]
# 确保邻居在图像内部
valid_mask = (neighbor_row >= 0) & (neighbor_row < H) & (neighbor_col >= 0) & (neighbor_col < W)
valid_row = neighbor_row[valid_mask]
valid_col = neighbor_col[valid_mask]
# 获取有效像素点的索引
idx = valid_mask.nonzero(as_tuple=True)[0]
neighbor_idx = valid_row * W + valid_col
# 获取相邻像素点的语义标签和空间坐标
sem_i = semantic_map[idx]
sem_j = semantic_map[neighbor_idx]
p_i = point_map[idx]
p_j = point_map[neighbor_idx]
conf_i = confidence_map[idx]
conf_j = confidence_map[neighbor_idx]
# 计算空间坐标差异的平方
distance = torch.sum((p_i - p_j)**2, dim=1)
# 如果相邻像素属于同一语义类别,计算加权损失
loss_mask = (sem_i == sem_j)
# 反向加权,低置信度的点会有更高的权重
# inverse_weight_i = 1.0 / (conf_i) # 防止除零错误
# inverse_weight_j = 1.0 / (conf_j)
weighted_distance = loss_mask * distance # 加权损失 * inverse_weight_i * inverse_weight_j
total_loss += torch.sum(weighted_distance)
# 跨图计算:对于同一语义类别的像素,只计算其均值差异,避免两两计算
# for b2 in range(B):
# if b == b2:
# continue # 跳过与自己图像的比较
# point_map_b2 = point_maps[b2]
# semantic_map_b2 = semantic_maps[b2]
# confidence_map_b2 = confidence_maps[b2]
# for sem_id in torch.unique(semantic_map):
# sem_mask_a = (semantic_map == sem_id)
# sem_mask_b2 = (semantic_map_b2 == sem_id)
# # 提取同一语义类别的像素点
# shared_points_a = point_map[sem_mask_a]
# shared_points_b2 = point_map_b2[sem_mask_b2]
# shared_conf_a = confidence_map[sem_mask_a]
# shared_conf_b2 = confidence_map_b2[sem_mask_b2]
# if shared_points_a.shape[0] > 0 and shared_points_b2.shape[0] > 0:
# # 计算这些像素点的均值
# mean_a = shared_points_a.mean(dim=0) # 当前图像该语义类别的均值
# mean_b2 = shared_points_b2.mean(dim=0) # 第b2图像该语义类别的均值
# mean_conf_a = shared_conf_a.mean() # 当前图像该语义类别的置信度均值
# mean_conf_b2 = shared_conf_b2.mean() # 第b2图像该语义类别的置信度均值
# # 计算均值之间的空间差异,并考虑置信度的加权
# distance_cross = torch.sum((mean_a - mean_b2) ** 2)
# weighted_distance_cross = distance_cross * mean_conf_a * mean_conf_b2
# total_loss += weighted_distance_cross
# 平均损失
return total_loss / (B * H * W)
def forward(self, cur_iter=0):
pw_poses = self.get_pw_poses() # cam-to-world
pw_adapt = self.get_adaptors().unsqueeze(1)
proj_pts3d = self.get_pts3d(raw=True)
loss = 0.0
# depth = self.get_depthmaps(raw=True)
# print(depth.shape)
# if cur_iter < 100:
# # for i, pointmap in enumerate(proj_pts3d):
# # loss += self.spatial_smoothness_loss(pointmap, seg_maps[i].cuda())
# # depths = self.get_depthmaps()
# # # cogs = self.cogs
# # seg_maps = self.segmaps
# # im_conf = self.conf_trf(torch.stack([param_tensor for param_tensor in self.im_conf]))
# # for i, depth in enumerate(depths):
# # # print(seg_maps[i].shape)
# # # H, W = depth.shape
# # # tmp = cogs[i].reshape(-1, 1024)
# # # tmp = torch.matmul(tmp, self.cog_matrix.detach().t())
# # # tmp / (tmp.norm(dim=-1, keepdim=True)+0.000000000001)
# # # tmp = tmp.reshape(H, W, 3)
# # loss += self.segmap_loss(depth, seg_maps[i], im_conf[i])
# # loss += self.semantic_loss(cogs[i], depth)
# # im_conf = self.conf_trf(torch.stack([param_tensor for param_tensor in self.im_conf]))
# # cogs = self.cogs.permute(0, 3, 1, 2)
# # cogs = F.interpolate(cogs, scale_factor=2, mode='nearest')
# # cogs = cogs.permute(0, 2, 3, 1)
# # cogs = torch.stack(self.cogs).view(-1, 1024)
# # proj = proj_pts3d.view(-1, 3)
# # proj = proj / proj.norm(dim=-1, keepdim=True)
# # img_conf = im_conf.view(-1,1)
# # selected_indices = torch.where(img_conf > 2.0)[0]
# # img_conf = img_conf[selected_indices]
# # cogs = cogs[selected_indices]
# # proj = proj[selected_indices]
# # print(img_conf.shape, cogs.shape, proj.shape)
# # proj_dis = torch.matmul(proj, proj.t())
# # cogs_dis = torch.matmul(cogs, cogs.t())
# # loss += (im_conf * F.mse_loss(proj_dis, cogs_dis, reduction='none')).mean()
# # if cur_iter % 2 == 0:
# # tmp = torch.matmul(cogs.detach(), self.cog_matrix.detach().t())
# # tmp = tmp / (tmp.norm(dim=-1, keepdim=True)+0.000000000001)
# # loss += 0/1*(img_conf * F.mse_loss(proj, tmp, reduction='none')).mean()
# # if cur_iter % 2 == 1:
# # tmp = torch.matmul(cogs.view(-1, 1024), self.cog_matrix.detach().t())
# # tmp = tmp / tmp.norm(dim=-1, keepdim=True)
# # loss += (im_conf.view(-1,1) * F.mse_loss(proj.detach(), tmp, reduction='none')).mean()
# # if cur_iter % 3 == 2:
# # tmp = torch.matmul(cogs.view(-1, 1024).detach(), self.cog_matrix.t())
# # tmp = tmp / tmp.norm(dim=-1, keepdim=True)
# # loss += (im_conf.view(-1,1) * F.mse_loss(proj.detach(), tmp, reduction='none')).mean()
seg_maps = torch.stack(self.segmaps).cuda()
im_conf = self.conf_trf(torch.stack([param_tensor for param_tensor in self.im_conf]))
loss += self.spatial_smoothness_loss_multi_image(proj_pts3d, seg_maps, im_conf)
# # if cur_iter > 100:
# # rotate pairwise prediction according to pw_poses
# aligned_pred_i = geotrf(pw_poses, pw_adapt * self._stacked_pred_i)
# aligned_pred_j = geotrf(pw_poses, pw_adapt * self._stacked_pred_j)
# loss += self.spatial_smoothness_loss_multi_image(aligned_pred_i, seg_maps[self._ei], im_conf[self._ei])
# loss += self.spatial_smoothness_loss_multi_image(aligned_pred_j, seg_maps[self._ej], im_conf[self._ej])
# # compute the less
# loss += self.dist(proj_pts3d[self._ei], aligned_pred_i, weight=self._weight_i).sum() / self.total_area_i
# loss += self.dist(proj_pts3d[self._ej], aligned_pred_j, weight=self._weight_j).sum() / self.total_area_j
return loss
def _fast_depthmap_to_pts3d(depth, pixel_grid, focal, pp):
pp = pp.unsqueeze(1)
focal = focal.unsqueeze(1)
assert focal.shape == (len(depth), 1, 1)
assert pp.shape == (len(depth), 1, 2)
assert pixel_grid.shape == depth.shape + (2,)
depth = depth.unsqueeze(-1)
return torch.cat((depth * (pixel_grid - pp) / focal, depth), dim=-1)
def ParameterStack(params, keys=None, is_param=None, fill=0):
if keys is not None:
params = [params[k] for k in keys]
if fill > 0:
params = [_ravel_hw(p, fill) for p in params]
requires_grad = params[0].requires_grad
assert all(p.requires_grad == requires_grad for p in params)
params = torch.stack(list(params)).float().detach()
if is_param or requires_grad:
params = nn.Parameter(params)
params.requires_grad_(requires_grad)
return params
def _ravel_hw(tensor, fill=0):
# ravel H,W
tensor = tensor.view((tensor.shape[0] * tensor.shape[1],) + tensor.shape[2:])
if len(tensor) < fill:
tensor = torch.cat((tensor, tensor.new_zeros((fill - len(tensor),)+tensor.shape[1:])))
return tensor
def acceptable_focal_range(H, W, minf=0.5, maxf=3.5):
focal_base = max(H, W) / (2 * np.tan(np.deg2rad(60) / 2)) # size / 1.1547005383792515
return minf*focal_base, maxf*focal_base
def apply_mask(img, msk):
img = img.copy()
img[msk] = 0
return img