File size: 22,985 Bytes
1b65314
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
# Copyright (C) 2024-present Naver Corporation. All rights reserved.
# Licensed under CC BY-NC-SA 4.0 (non-commercial use only).
#
# --------------------------------------------------------
# Main class for the implementation of the global alignment
# --------------------------------------------------------
import numpy as np
import torch
import torch.nn as nn

from dust3r.cloud_opt.base_opt import BasePCOptimizer
from dust3r.utils.geometry import xy_grid, geotrf
from dust3r.utils.device import to_cpu, to_numpy
import torch.nn.functional as F

class PointCloudOptimizer(BasePCOptimizer):
    """ Optimize a global scene, given a list of pairwise observations.
    Graph node: images
    Graph edges: observations = (pred1, pred2)
    """

    def __init__(self, *args, optimize_pp=False, focal_break=20, **kwargs):
        super().__init__(*args, **kwargs)

        self.has_im_poses = True  # by definition of this class
        self.focal_break = focal_break

        # adding thing to optimize
        self.im_depthmaps = nn.ParameterList(torch.randn(H, W)/10-3 for H, W in self.imshapes)  # log(depth)
        self.im_poses = nn.ParameterList(self.rand_pose(self.POSE_DIM) for _ in range(self.n_imgs))  # camera poses
        self.im_focals = nn.ParameterList(torch.FloatTensor(
            [self.focal_break*np.log(max(H, W))]) for H, W in self.imshapes)  # camera intrinsics
        self.im_pp = nn.ParameterList(torch.zeros((2,)) for _ in range(self.n_imgs))  # camera intrinsics
        self.im_pp.requires_grad_(optimize_pp)

        self.imshape = self.imshapes[0]
        im_areas = [h*w for h, w in self.imshapes]
        self.max_area = max(im_areas)

        # adding thing to optimize
        self.im_depthmaps = ParameterStack(self.im_depthmaps, is_param=True, fill=self.max_area)
        self.im_poses = ParameterStack(self.im_poses, is_param=True)
        self.im_focals = ParameterStack(self.im_focals, is_param=True)
        self.im_pp = ParameterStack(self.im_pp, is_param=True)
        self.register_buffer('_pp', torch.tensor([(w/2, h/2) for h, w in self.imshapes]))
        self.register_buffer('_grid', ParameterStack(
            [xy_grid(W, H, device=self.device) for H, W in self.imshapes], fill=self.max_area))

        # pre-compute pixel weights
        self.register_buffer('_weight_i', ParameterStack(
            [self.conf_trf(self.conf_i[i_j]) for i_j in self.str_edges], fill=self.max_area))
        self.register_buffer('_weight_j', ParameterStack(
            [self.conf_trf(self.conf_j[i_j]) for i_j in self.str_edges], fill=self.max_area))

        # precompute aa
        self.register_buffer('_stacked_pred_i', ParameterStack(self.pred_i, self.str_edges, fill=self.max_area))
        self.register_buffer('_stacked_pred_j', ParameterStack(self.pred_j, self.str_edges, fill=self.max_area))
        self.register_buffer('_ei', torch.tensor([i for i, j in self.edges]))
        self.register_buffer('_ej', torch.tensor([j for i, j in self.edges]))
        self.total_area_i = sum([im_areas[i] for i, j in self.edges])
        self.total_area_j = sum([im_areas[j] for i, j in self.edges])

    def _check_all_imgs_are_selected(self, msk):
        assert np.all(self._get_msk_indices(msk) == np.arange(self.n_imgs)), 'incomplete mask!'

    def preset_pose(self, known_poses, pose_msk=None):  # cam-to-world
        self._check_all_imgs_are_selected(pose_msk)

        if isinstance(known_poses, torch.Tensor) and known_poses.ndim == 2:
            known_poses = [known_poses]
        for idx, pose in zip(self._get_msk_indices(pose_msk), known_poses):
            if self.verbose:
                print(f' (setting pose #{idx} = {pose[:3,3]})')
            self._no_grad(self._set_pose(self.im_poses, idx, torch.tensor(pose)))

        # normalize scale if there's less than 1 known pose
        n_known_poses = sum((p.requires_grad is False) for p in self.im_poses)
        self.norm_pw_scale = (n_known_poses <= 1)

        self.im_poses.requires_grad_(False)
        self.norm_pw_scale = False

    def preset_focal(self, known_focals, msk=None):
        self._check_all_imgs_are_selected(msk)

        for idx, focal in zip(self._get_msk_indices(msk), known_focals):
            if self.verbose:
                print(f' (setting focal #{idx} = {focal})')
            self._no_grad(self._set_focal(idx, focal))

        self.im_focals.requires_grad_(False)

    def preset_principal_point(self, known_pp, msk=None):
        self._check_all_imgs_are_selected(msk)

        for idx, pp in zip(self._get_msk_indices(msk), known_pp):
            if self.verbose:
                print(f' (setting principal point #{idx} = {pp})')
            self._no_grad(self._set_principal_point(idx, pp))

        self.im_pp.requires_grad_(False)

    def _get_msk_indices(self, msk):
        if msk is None:
            return range(self.n_imgs)
        elif isinstance(msk, int):
            return [msk]
        elif isinstance(msk, (tuple, list)):
            return self._get_msk_indices(np.array(msk))
        elif msk.dtype in (bool, torch.bool, np.bool_):
            assert len(msk) == self.n_imgs
            return np.where(msk)[0]
        elif np.issubdtype(msk.dtype, np.integer):
            return msk
        else:
            raise ValueError(f'bad {msk=}')

    def _no_grad(self, tensor):
        assert tensor.requires_grad, 'it must be True at this point, otherwise no modification occurs'

    def _set_focal(self, idx, focal, force=False):
        param = self.im_focals[idx]
        if param.requires_grad or force:  # can only init a parameter not already initialized
            param.data[:] = self.focal_break * np.log(focal)
        return param

    def get_focals(self):
        log_focals = torch.stack(list(self.im_focals), dim=0)
        return (log_focals / self.focal_break).exp()

    def get_known_focal_mask(self):
        return torch.tensor([not (p.requires_grad) for p in self.im_focals])

    def _set_principal_point(self, idx, pp, force=False):
        param = self.im_pp[idx]
        H, W = self.imshapes[idx]
        if param.requires_grad or force:  # can only init a parameter not already initialized
            param.data[:] = to_cpu(to_numpy(pp) - (W/2, H/2)) / 10
        return param

    def get_principal_points(self):
        return self._pp + 10 * self.im_pp

    def get_intrinsics(self):
        K = torch.zeros((self.n_imgs, 3, 3), device=self.device)
        focals = self.get_focals().flatten()
        K[:, 0, 0] = K[:, 1, 1] = focals
        K[:, :2, 2] = self.get_principal_points()
        K[:, 2, 2] = 1
        return K

    def get_im_poses(self):  # cam to world
        cam2world = self._get_poses(self.im_poses)
        return cam2world

    def _set_depthmap(self, idx, depth, force=False):
        depth = _ravel_hw(depth, self.max_area)

        param = self.im_depthmaps[idx]
        if param.requires_grad or force:  # can only init a parameter not already initialized
            param.data[:] = depth.log().nan_to_num(neginf=0)
        return param

    def get_depthmaps(self, raw=False):
        res = self.im_depthmaps.exp()
        if not raw:
            res = [dm[:h*w].view(h, w) for dm, (h, w) in zip(res, self.imshapes)]
        return res

    def depth_to_pts3d(self):
        # Get depths and  projection params if not provided
        focals = self.get_focals()
        pp = self.get_principal_points()
        im_poses = self.get_im_poses()
        depth = self.get_depthmaps(raw=True)

        # get pointmaps in camera frame
        rel_ptmaps = _fast_depthmap_to_pts3d(depth, self._grid, focals, pp=pp)
        # project to world frame
        return geotrf(im_poses, rel_ptmaps)

    def get_pts3d(self, raw=False):
        res = self.depth_to_pts3d()
        if not raw:
            res = [dm[:h*w].view(h, w, 3) for dm, (h, w) in zip(res, self.imshapes)]
        return res

    # def cosine_similarity_batch(self, semantic_features, query_pixels):
    #     # 扩展维度进行广播计算余弦相似度
    #     query_pixels = query_pixels.unsqueeze(1)  # [B, 1, C]
    #     semantic_features = semantic_features.unsqueeze(0)  # [1, H, W, C]
    #     cos_sim = F.cosine_similarity(query_pixels, semantic_features, dim=-1)  # [B, H, W]
    #     return cos_sim

    # def semantic_loss(self, semantic_features, predicted_depth, window_size=32, stride=16, lambda_semantic=0.1):
    #     # 获取图像的尺寸
    #     height, width, channels = semantic_features.shape
    #     # 执行矩阵化处理
    #     ret_loss = 0.0
    #     cnt = 0
    #     for i in range(0, height, stride):
    #         for j in range(0, width, stride):
    #             window_semantic = semantic_features[i:min(i+window_size,height), j:min(j+window_size,width), :]
    #             window_depth = predicted_depth[i:min(i+window_size,height), j:min(j+window_size,width)]
    #             # print(window_semantic.shape, window_depth.shape)
                
    #             window_semantic = window_semantic.reshape(-1, channels)
    #             window_depth = window_depth.reshape(-1, 1)

    #             cos_sim = torch.matmul(window_semantic, window_semantic.t())
    #             dep_dif = torch.abs(window_depth - window_depth.reshape(1, -1))

    #             # print(torch.sum(cos_sim * dep_dif))
    #             ret_loss += torch.mean(cos_sim * dep_dif)
    #             cnt += 1

    #     return ret_loss / cnt

    # def segmap_loss(self, predicted_depth, seg_map):
    #     ret_loss = 0.0
    #     cnt = 0
    #     seg_map = seg_map.view(-1)
    #     predicted_depth = predicted_depth.view(-1, 1)
    #     unique_groups = torch.unique(seg_map)
    #     for group in unique_groups:
    #         # print(group)
    #         if group == -1:
    #             continue
    #         group_indices = (seg_map == group).nonzero(as_tuple=True)[0]
    #         if len(group_indices) > 0:
    #             now_feat = predicted_depth[group_indices]
                
    #             dep_dif = torch.abs(now_feat - now_feat.reshape(1, -1))

    #             ret_loss += torch.mean(dep_dif)
    #             cnt += 1
        
    #     return ret_loss / cnt if cnt > 0 else ret_loss

    # def spatial_smoothness_loss(self, point_map, semantic_map):
    #     """
    #     计算空间平滑性损失,使得同一语义类别的相邻像素点空间位置变化不剧烈。
    #     使用八邻域。
        
    #     参数:
    #     - point_map: (H, W, 3),表示每个像素点的空间坐标 (x, y, z)
    #     - semantic_map: (H, W, 1),每个像素点的语义标签
        
    #     返回:
    #     - 总损失值
    #     """
        
    #     # 获取图像的高度和宽度
    #     H, W = semantic_map.shape

    #     # 将点图和语义图调整为二维形式
    #     point_map = point_map.view(-1, 3)  # (H * W, 3)
    #     semantic_map = semantic_map.view(-1)  # (H * W,)
        
    #     # 创建图像的索引
    #     row_idx, col_idx = torch.meshgrid(torch.arange(H), torch.arange(W))
    #     row_idx = row_idx.flatten()
    #     col_idx = col_idx.flatten()
        
    #     # 定义八邻域偏移
    #     neighbor_offsets = torch.tensor([[-1, 0], [1, 0], [0, -1], [0, 1], 
    #                                     [-1, -1], [-1, 1], [1, -1], [1, 1]], dtype=torch.long)
        
    #     # 存储损失值
    #     total_loss = 0.0

    #     # 对每个像素点进行计算
    #     for offset in neighbor_offsets:
    #         # 计算邻居位置
    #         neighbor_row = row_idx + offset[0]
    #         neighbor_col = col_idx + offset[1]
            
    #         # 确保邻居在图像内部
    #         valid_mask = (neighbor_row >= 0) & (neighbor_row < H) & (neighbor_col >= 0) & (neighbor_col < W)
    #         valid_row = neighbor_row[valid_mask]
    #         valid_col = neighbor_col[valid_mask]
            
    #         # 获取有效像素点的索引
    #         idx = valid_mask.nonzero(as_tuple=True)[0]
    #         neighbor_idx = valid_row * W + valid_col

    #         # 获取相邻像素点的语义标签和空间坐标
    #         sem_i = semantic_map[idx]
    #         sem_j = semantic_map[neighbor_idx]
    #         p_i = point_map[idx]
    #         p_j = point_map[neighbor_idx]

    #         # 计算空间坐标差异的平方
    #         distance = torch.sum((p_i - p_j) ** 2, dim=1)

    #         # 如果相邻像素属于同一语义类别,计算损失
    #         loss_mask = (sem_i == sem_j)
    #         total_loss += torch.sum(loss_mask * distance)

    #     # 平均损失
    #     return total_loss / point_map.size(0)
    

    def spatial_smoothness_loss_multi_image(self, point_maps, semantic_maps, confidence_maps):
        """
        计算空间平滑性损失,考虑多张图像中属于同一物体的像素点的空间平滑性。
        
        参数:
        - point_maps: (B, H, W, 3),每张图像的空间坐标 (x, y, z) B是batch大小
        - semantic_maps: (B, H, W, 1),每张图像的语义标签
        
        返回:
        - 总损失值
        """
        
        B, H, W = semantic_maps.shape
        
        # 将点图和语义图调整为二维形式
        point_maps = point_maps.view(B, -1, 3)  # (B, H*W, 3)
        semantic_maps = semantic_maps.view(B, -1)  # (B, H*W)
        confidence_maps = confidence_maps.view(B, -1)  # (B, H*W)
        
        # 存储损失值
        total_loss = 0.0

        # 对每张图像中的每个像素进行计算
        for b in range(B):
            # 获取当前图像的点图和语义图
            point_map = point_maps[b]
            semantic_map = semantic_maps[b]
            confidence_map = confidence_maps[b]

            # 创建图像的索引
            row_idx, col_idx = torch.meshgrid(torch.arange(H), torch.arange(W))
            row_idx = row_idx.flatten()
            col_idx = col_idx.flatten()

            # 定义八邻域偏移
            neighbor_offsets = torch.tensor([[-1, 0], [1, 0], [0, -1], [0, 1], 
                                            [-1, -1], [-1, 1], [1, -1], [1, 1]], dtype=torch.long)

            # 对每个像素点进行计算(仅在当前图像内计算邻域关系)
            for offset in neighbor_offsets:
                # 计算邻居位置
                neighbor_row = row_idx + offset[0]
                neighbor_col = col_idx + offset[1]

                # 确保邻居在图像内部
                valid_mask = (neighbor_row >= 0) & (neighbor_row < H) & (neighbor_col >= 0) & (neighbor_col < W)
                valid_row = neighbor_row[valid_mask]
                valid_col = neighbor_col[valid_mask]

                # 获取有效像素点的索引
                idx = valid_mask.nonzero(as_tuple=True)[0]
                neighbor_idx = valid_row * W + valid_col

                # 获取相邻像素点的语义标签和空间坐标
                sem_i = semantic_map[idx]
                sem_j = semantic_map[neighbor_idx]
                p_i = point_map[idx]
                p_j = point_map[neighbor_idx]
                conf_i = confidence_map[idx]
                conf_j = confidence_map[neighbor_idx]

                # 计算空间坐标差异的平方
                distance = torch.sum((p_i - p_j)**2, dim=1)

                # 如果相邻像素属于同一语义类别,计算加权损失
                loss_mask = (sem_i == sem_j)

                # 反向加权,低置信度的点会有更高的权重
                # inverse_weight_i = 1.0 / (conf_i)  # 防止除零错误
                # inverse_weight_j = 1.0 / (conf_j)
                weighted_distance = loss_mask * distance # 加权损失 * inverse_weight_i * inverse_weight_j
                total_loss += torch.sum(weighted_distance)

            # 跨图计算:对于同一语义类别的像素,只计算其均值差异,避免两两计算
        # for b2 in range(B):
        #     if b == b2:
        #         continue  # 跳过与自己图像的比较
        #     point_map_b2 = point_maps[b2]
        #     semantic_map_b2 = semantic_maps[b2]
        #     confidence_map_b2 = confidence_maps[b2]

        #     for sem_id in torch.unique(semantic_map):
        #         sem_mask_a = (semantic_map == sem_id)
        #         sem_mask_b2 = (semantic_map_b2 == sem_id)

        #         # 提取同一语义类别的像素点
        #         shared_points_a = point_map[sem_mask_a]
        #         shared_points_b2 = point_map_b2[sem_mask_b2]
        #         shared_conf_a = confidence_map[sem_mask_a]
        #         shared_conf_b2 = confidence_map_b2[sem_mask_b2]

        #         if shared_points_a.shape[0] > 0 and shared_points_b2.shape[0] > 0:
        #             # 计算这些像素点的均值
        #             mean_a = shared_points_a.mean(dim=0)  # 当前图像该语义类别的均值
        #             mean_b2 = shared_points_b2.mean(dim=0)  # 第b2图像该语义类别的均值
        #             mean_conf_a = shared_conf_a.mean()  # 当前图像该语义类别的置信度均值
        #             mean_conf_b2 = shared_conf_b2.mean()  # 第b2图像该语义类别的置信度均值

        #             # 计算均值之间的空间差异,并考虑置信度的加权
        #             distance_cross = torch.sum((mean_a - mean_b2) ** 2)
        #             weighted_distance_cross = distance_cross * mean_conf_a * mean_conf_b2
        #             total_loss += weighted_distance_cross

        # 平均损失
        return total_loss / (B * H * W)



    def forward(self, cur_iter=0):
        pw_poses = self.get_pw_poses()  # cam-to-world
        pw_adapt = self.get_adaptors().unsqueeze(1)
        proj_pts3d = self.get_pts3d(raw=True)

        loss = 0.0

        # depth = self.get_depthmaps(raw=True)
        # print(depth.shape)
        # if cur_iter < 100:
        # # for i, pointmap in enumerate(proj_pts3d):
        # #     loss += self.spatial_smoothness_loss(pointmap, seg_maps[i].cuda())

        # # depths = self.get_depthmaps()
        # # # cogs = self.cogs
        # # seg_maps = self.segmaps
        # # im_conf = self.conf_trf(torch.stack([param_tensor for param_tensor in self.im_conf]))
        
        # # for i, depth in enumerate(depths):
        # #     # print(seg_maps[i].shape)
        # #     # H, W = depth.shape
        # #     # tmp = cogs[i].reshape(-1, 1024)
        # #     # tmp = torch.matmul(tmp, self.cog_matrix.detach().t())
        # #     # tmp / (tmp.norm(dim=-1, keepdim=True)+0.000000000001)
        # #     # tmp = tmp.reshape(H, W, 3)
        # #     loss += self.segmap_loss(depth, seg_maps[i], im_conf[i])
        #     # loss += self.semantic_loss(cogs[i], depth)

        # # im_conf = self.conf_trf(torch.stack([param_tensor for param_tensor in self.im_conf]))
        
        # # cogs = self.cogs.permute(0, 3, 1, 2)
        # # cogs = F.interpolate(cogs, scale_factor=2, mode='nearest')
        # # cogs = cogs.permute(0, 2, 3, 1)
        # # cogs = torch.stack(self.cogs).view(-1, 1024)
        # # proj = proj_pts3d.view(-1, 3)
        # # proj = proj / proj.norm(dim=-1, keepdim=True)
        # # img_conf = im_conf.view(-1,1)

        # # selected_indices = torch.where(img_conf > 2.0)[0]
        # # img_conf = img_conf[selected_indices]
        # # cogs = cogs[selected_indices]
        # # proj = proj[selected_indices]
        # # print(img_conf.shape, cogs.shape, proj.shape)
        # # proj_dis = torch.matmul(proj, proj.t())
        # # cogs_dis = torch.matmul(cogs, cogs.t())
        # # loss += (im_conf * F.mse_loss(proj_dis, cogs_dis, reduction='none')).mean()

        # # if cur_iter % 2 == 0:
        # # tmp = torch.matmul(cogs.detach(), self.cog_matrix.detach().t())
        # # tmp = tmp / (tmp.norm(dim=-1, keepdim=True)+0.000000000001)
        # # loss += 0/1*(img_conf * F.mse_loss(proj, tmp, reduction='none')).mean()
        # # if cur_iter % 2 == 1:
        # #     tmp = torch.matmul(cogs.view(-1, 1024), self.cog_matrix.detach().t())
        # #     tmp = tmp / tmp.norm(dim=-1, keepdim=True)
        # #     loss += (im_conf.view(-1,1) * F.mse_loss(proj.detach(), tmp, reduction='none')).mean()
        # # if cur_iter % 3 == 2:
        # #     tmp = torch.matmul(cogs.view(-1, 1024).detach(), self.cog_matrix.t())
        # #     tmp = tmp / tmp.norm(dim=-1, keepdim=True)
        # #     loss += (im_conf.view(-1,1) * F.mse_loss(proj.detach(), tmp, reduction='none')).mean()
        seg_maps = torch.stack(self.segmaps).cuda()
        im_conf = self.conf_trf(torch.stack([param_tensor for param_tensor in self.im_conf]))
        loss += self.spatial_smoothness_loss_multi_image(proj_pts3d, seg_maps, im_conf)
        # # if cur_iter > 100:
        # # rotate pairwise prediction according to pw_poses
        # aligned_pred_i = geotrf(pw_poses, pw_adapt * self._stacked_pred_i)
        # aligned_pred_j = geotrf(pw_poses, pw_adapt * self._stacked_pred_j)

        # loss += self.spatial_smoothness_loss_multi_image(aligned_pred_i, seg_maps[self._ei], im_conf[self._ei])
        # loss += self.spatial_smoothness_loss_multi_image(aligned_pred_j, seg_maps[self._ej], im_conf[self._ej])

        # # compute the less
        # loss += self.dist(proj_pts3d[self._ei], aligned_pred_i, weight=self._weight_i).sum() / self.total_area_i
        # loss += self.dist(proj_pts3d[self._ej], aligned_pred_j, weight=self._weight_j).sum() / self.total_area_j
        
        return loss


def _fast_depthmap_to_pts3d(depth, pixel_grid, focal, pp):
    pp = pp.unsqueeze(1)
    focal = focal.unsqueeze(1)
    assert focal.shape == (len(depth), 1, 1)
    assert pp.shape == (len(depth), 1, 2)
    assert pixel_grid.shape == depth.shape + (2,)
    depth = depth.unsqueeze(-1)
    return torch.cat((depth * (pixel_grid - pp) / focal, depth), dim=-1)


def ParameterStack(params, keys=None, is_param=None, fill=0):
    if keys is not None:
        params = [params[k] for k in keys]

    if fill > 0:
        params = [_ravel_hw(p, fill) for p in params]

    requires_grad = params[0].requires_grad
    assert all(p.requires_grad == requires_grad for p in params)

    params = torch.stack(list(params)).float().detach()
    if is_param or requires_grad:
        params = nn.Parameter(params)
        params.requires_grad_(requires_grad)
    return params


def _ravel_hw(tensor, fill=0):
    # ravel H,W
    tensor = tensor.view((tensor.shape[0] * tensor.shape[1],) + tensor.shape[2:])

    if len(tensor) < fill:
        tensor = torch.cat((tensor, tensor.new_zeros((fill - len(tensor),)+tensor.shape[1:])))
    return tensor


def acceptable_focal_range(H, W, minf=0.5, maxf=3.5):
    focal_base = max(H, W) / (2 * np.tan(np.deg2rad(60) / 2))  # size / 1.1547005383792515
    return minf*focal_base, maxf*focal_base


def apply_mask(img, msk):
    img = img.copy()
    img[msk] = 0
    return img