Spaces:
Running
Running
File size: 9,832 Bytes
4c1b360 73dbe3a 4c1b360 73dbe3a 4c1b360 73dbe3a 4c1b360 73dbe3a e4786c4 cb2e59c 4c1b360 cb2e59c f422903 cb2e59c f422903 cb47c06 4c1b360 cb47c06 cb2e59c d1095ec cb47c06 d1095ec cb47c06 2c70b2b 4c1b360 cb47c06 4c1b360 2c70b2b cb2e59c 4c1b360 cb2e59c 4c1b360 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 |
import subprocess
# Utility functions
def run_command(command, cwd=None):
"""Run a system command."""
result = subprocess.run(command, shell=True, cwd=cwd, text=True, capture_output=True)
if result.returncode != 0:
print(f"Command failed: {command}")
print(f"Error: {result.stderr}")
exit(result.returncode)
else:
print(f"Command succeeded: {command}")
print(result.stdout)
run_command('pip install openai')
import time
import gradio as gr
from openai import OpenAI
import os
from huggingface_hub import snapshot_download
# Model configuration
MODEL_ID = "deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B"
QUANT = "Q5_K_M"
def setup_llama_cpp():
"""Clone and compile llama.cpp repository."""
if not os.path.exists('llama.cpp'):
run_command('git clone https://github.com/ggml-org/llama.cpp.git')
os.chdir('llama.cpp')
run_command('pip install -r requirements.txt')
run_command('cmake -B build')
run_command('cmake --build build --config Release -j 8')
os.chdir('..')
def setup_model(model_id):
"""Download and convert model to GGUF format, return quantized model path."""
local_dir = model_id.split('/')[-1]
if not os.path.exists(local_dir):
snapshot_download(repo_id=model_id, local_dir=local_dir)
gguf_path = f"{local_dir}.gguf"
if not os.path.exists(gguf_path):
run_command(f'python llama.cpp/convert_hf_to_gguf.py ./{local_dir} --outfile {gguf_path}')
quantized_path = f"{local_dir}-{QUANT}.gguf"
if not os.path.exists(quantized_path):
run_command(f'./llama.cpp/build/bin/llama-quantize ./{gguf_path} {quantized_path} {QUANT}')
return quantized_path
def start_llama_server(model_path):
"""Start llama-server in the background."""
cmd = f'./llama.cpp/build/bin/llama-server --host 0.0.0.0 --port 8080 --model {model_path} --ctx-size 32768'
process = subprocess.Popen(cmd, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
# Give the server a moment to start
time.sleep(5)
return process
# GUI-specific utilities (unchanged from your original)
def format_time(seconds_float):
total_seconds = int(round(seconds_float))
hours = total_seconds // 3600
remaining_seconds = total_seconds % 3600
minutes = remaining_seconds // 60
seconds = remaining_seconds % 60
if hours > 0:
return f"{hours}h {minutes}m {seconds}s"
elif minutes > 0:
return f"{minutes}m {seconds}s"
else:
return f"{seconds}s"
DESCRIPTION = '''
# Duplicate the space for free private inference.
## DeepSeek-R1 Distill Qwen-1.5B Demo
A reasoning model trained using RL (Reinforcement Learning) that demonstrates structured reasoning capabilities.
'''
CSS = """
.spinner { animation: spin 1s linear infinite; display: inline-block; margin-right: 8px; }
@keyframes spin { from { transform: rotate(0deg); } to { transform: rotate(360deg); } }
.thinking-summary { cursor: pointer; padding: 8px; background: #f5f5f5; border-radius: 4px; margin: 4px 0; }
.thought-content { padding: 10px; background: #f8f9fa; border-radius: 4px; margin: 5px 0; }
.thinking-container { border-left: 3px solid #facc15; padding-left: 10px; margin: 8px 0; background: #210c29; }
details:not([open]) .thinking-container { border-left-color: #290c15; }
details { border: 1px solid #e0e0e0 !important; border-radius: 8px !important; padding: 12px !important; margin: 8px 0 !important; transition: border-color 0.2s; }
"""
client = OpenAI(base_url="http://localhost:8080/v1", api_key="no-key-required")
def user(message, history):
return "", history + [[message, None]]
class ParserState:
__slots__ = ['answer', 'thought', 'in_think', 'start_time', 'last_pos', 'total_think_time']
def __init__(self):
self.answer = ""
self.thought = ""
self.in_think = False
self.start_time = 0
self.last_pos = 0
self.total_think_time = 0.0
def parse_response(text, state):
buffer = text[state.last_pos:]
state.last_pos = len(text)
while buffer:
if not state.in_think:
think_start = buffer.find('<think>')
if think_start != -1:
state.answer += buffer[:think_start]
state.in_think = True
state.start_time = time.perf_counter()
buffer = buffer[think_start + 7:]
else:
state.answer += buffer
break
else:
think_end = buffer.find('</think>')
if think_end != -1:
state.thought += buffer[:think_end]
duration = time.perf_counter() - state.start_time
state.total_think_time += duration
state.in_think = False
buffer = buffer[think_end + 8:]
else:
state.thought += buffer
break
elapsed = time.perf_counter() - state.start_time if state.in_think else 0
return state, elapsed
def format_response(state, elapsed):
answer_part = state.answer.replace('<think>', '').replace('</think>', '')
collapsible = []
collapsed = "<details open>"
if state.thought or state.in_think:
if state.in_think:
total_elapsed = state.total_think_time + elapsed
formatted_time = format_time(total_elapsed)
status = f"🌀 Thinking for {formatted_time}"
else:
formatted_time = format_time(state.total_think_time)
status = f"✅ Thought for {formatted_time}"
collapsed = "<details>"
collapsible.append(
f"{collapsed}<summary>{status}</summary>\n\n<div class='thinking-container'>\n{state.thought}\n</div>\n</details>"
)
return collapsible, answer_part
def generate_response(history, temperature, top_p, max_tokens, active_gen):
messages = [
{"role": "system", "content": "You are a helpful assistant."},
*[{"role": "user" if i % 2 == 0 else "assistant", "content": msg or ""}
for i, (user_msg, assistant_msg) in enumerate(history[:-1])],
{"role": "user", "content": history[-1][0]}
]
full_response = ""
state = ParserState()
try:
stream = client.chat.completions.create(
model="", # Model name not needed with llama-server
messages=messages,
temperature=temperature,
top_p=top_p,
max_tokens=max_tokens,
stream=True
)
for chunk in stream:
if not active_gen[0]:
break
if chunk.choices[0].delta.content:
full_response += chunk.choices[0].delta.content
state, elapsed = parse_response(full_response, state)
collapsible, answer_part = format_response(state, elapsed)
history[-1][1] = "\n\n".join(collapsible + [answer_part])
yield history
state, elapsed = parse_response(full_response, state)
collapsible, answer_part = format_response(state, elapsed)
history[-1][1] = "\n\n".join(collapsible + [answer_part])
yield history
except Exception as e:
history[-1][1] = f"Error: {str(e)}"
yield history
finally:
active_gen[0] = False
# GUI setup
with gr.Blocks(css=CSS) as demo:
gr.Markdown(DESCRIPTION)
active_gen = gr.State([False])
chatbot = gr.Chatbot(
elem_id="chatbot",
height=500,
show_label=False,
render_markdown=True
)
with gr.Row():
msg = gr.Textbox(
label="Message",
placeholder="Type your message...",
container=False,
scale=4
)
submit_btn = gr.Button("Send", variant='primary', scale=1)
with gr.Column(scale=2):
with gr.Row():
clear_btn = gr.Button("Clear", variant='secondary')
stop_btn = gr.Button("Stop", variant='stop')
with gr.Accordion("Parameters", open=False):
temperature = gr.Slider(minimum=0.1, maximum=1.5, value=0.6, label="Temperature")
top_p = gr.Slider(minimum=0.1, maximum=1.0, value=0.95, label="Top-p")
max_tokens = gr.Slider(minimum=2048, maximum=32768, value=4096, step=64, label="Max Tokens")
gr.Examples(
examples=[
["How many r's are in the word strawberry?"],
["Write 10 funny sentences that end in a fruit!"],
["Let’s play word chains! I’ll start: PIZZA. Your turn! Next word must start with… A!"]
],
inputs=msg,
label="Example Prompts"
)
submit_event = submit_btn.click(
user, [msg, chatbot], [msg, chatbot], queue=False
).then(
lambda: [True], outputs=active_gen
).then(
generate_response, [chatbot, temperature, top_p, max_tokens, active_gen], chatbot
)
msg.submit(
user, [msg, chatbot], [msg, chatbot], queue=False
).then(
lambda: [True], outputs=active_gen
).then(
generate_response, [chatbot, temperature, top_p, max_tokens, active_gen], chatbot
)
stop_btn.click(
lambda: [False], None, active_gen, cancels=[submit_event]
)
clear_btn.click(lambda: None, None, chatbot, queue=False)
if __name__ == "__main__":
# Install dependencies
run_command('pip install llama-cpp-python openai')
setup_llama_cpp()
MODEL_PATH = setup_model(MODEL_ID)
# Start llama-server
server_process = start_llama_server(MODEL_PATH)
try:
# Launch GUI
demo.launch(server_name="0.0.0.0", server_port=7860)
finally:
# Cleanup: terminate the server process when the GUI is closed
server_process.terminate()
server_process.wait() |