hsuwill000 commited on
Commit
cb47c06
·
verified ·
1 Parent(s): d696592

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +67 -51
app.py CHANGED
@@ -1,64 +1,80 @@
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
 
 
 
 
3
 
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
 
 
 
 
 
 
 
 
 
 
 
 
 
8
 
 
 
 
9
 
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
 
 
 
 
 
 
 
 
 
26
  messages.append({"role": "user", "content": message})
27
-
28
- response = ""
29
-
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
  stream=True,
34
  temperature=temperature,
 
35
  top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
 
 
 
 
 
41
 
 
42
 
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
- demo = gr.ChatInterface(
47
- respond,
 
48
  additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
  ],
60
- )
61
-
62
-
63
- if __name__ == "__main__":
64
- demo.launch()
 
1
  import gradio as gr
2
+ import time
3
+ import subprocess
4
+ import os
5
+ from llama_cpp import Llama
6
+ from huggingface_hub import snapshot_download
7
 
8
+ # 下载并转换模型
9
+ def setup_model(model_id):
10
+ local_dir = model_id.split('/')[-1]
11
+ if not os.path.exists(local_dir):
12
+ snapshot_download(repo_id=model_id, local_dir=local_dir)
13
+
14
+ # 转换为 GGUF 格式
15
+ gguf_path = f"{local_dir}.gguf"
16
+ if not os.path.exists(gguf_path):
17
+ subprocess.run(f'python llama.cpp/convert_hf_to_gguf.py ./{local_dir} --outfile {gguf_path}', shell=True, check=True)
18
+
19
+ # 量化模型
20
+ quantized_path = f"{local_dir}-Q2_K.gguf"
21
+ if not os.path.exists(quantized_path):
22
+ subprocess.run(f'./llama.cpp/build/bin/llama-quantize ./{gguf_path} {quantized_path} Q2_K', shell=True, check=True)
23
+
24
+ return quantized_path
25
 
26
+ # 设定模型路径
27
+ MODEL_ID = "ibm-granite/granite-3.1-2b-instruct"
28
+ MODEL_PATH = setup_model(MODEL_ID)
29
 
30
+ # 加载 Llama 模型
31
+ llm = Llama(
32
+ model_path=MODEL_PATH,
33
+ verbose=False,
34
+ n_threads=4, # 调整线程数
35
+ n_ctx=32768 # 上下文窗口大小
36
+ )
 
 
 
 
 
 
 
 
37
 
38
+ def chat_with_model(message, history, system_prompt, temperature, max_tokens, top_k, top_p):
39
+ """调用 Llama 模型生成回复"""
40
+ start_time = time.time()
41
+
42
+ messages = [{"role": "system", "content": system_prompt}]
43
+ for user_msg, assistant_msg in history:
44
+ messages.append({"role": "user", "content": user_msg})
45
+ messages.append({"role": "assistant", "content": assistant_msg})
46
  messages.append({"role": "user", "content": message})
47
+
48
+ stream = llm.create_chat_completion(
49
+ messages=messages,
 
 
 
50
  stream=True,
51
  temperature=temperature,
52
+ top_k=top_k,
53
  top_p=top_p,
54
+ max_tokens=max_tokens,
55
+ stop=["<|im_end|>"]
56
+ )
57
+
58
+ response = ""
59
+ for chunk in stream:
60
+ if "choices" in chunk and chunk["choices"]:
61
+ text = chunk["choices"][0].get("delta", {}).get("content", "")
62
+ response += text
63
+ yield response # 流式返回文本
64
 
65
+ print(f"生成耗时: {time.time() - start_time:.2f} 秒")
66
 
67
+ # 启动 Gradio ChatInterface
68
+ gr.ChatInterface(
69
+ fn=chat_with_model,
70
+ title="Llama GGUF Chatbot",
71
+ description="使用 Llama GGUF 量化模型进行推理",
72
+ additional_inputs_accordion=gr.Accordion(label="⚙️ 参数设置", open=False),
73
  additional_inputs=[
74
+ gr.Textbox("You are a helpful assistant.", label="System Prompt"),
75
+ gr.Slider(0, 1, 0.6, label="Temperature"),
76
+ gr.Slider(100, 4096, 1000, label="Max Tokens"),
77
+ gr.Slider(1, 100, 40, label="Top K"),
78
+ gr.Slider(0, 1, 0.85, label="Top P"),
 
 
 
 
 
79
  ],
80
+ ).queue().launch()