Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
@@ -1,55 +1,12 @@
|
|
1 |
import gradio as gr
|
2 |
-
import
|
3 |
-
import torchaudio
|
4 |
-
import json
|
5 |
-
import os
|
6 |
|
7 |
-
|
8 |
-
from model import AudioLanguageClassifier, AudioLanguageClassifierConfig, AudioFeatureExtractor
|
9 |
-
|
10 |
-
MODEL_DIR = "."
|
11 |
-
|
12 |
-
# Load config and mappings
|
13 |
-
with open(os.path.join(MODEL_DIR, "config.json")) as f:
|
14 |
-
config_dict = json.load(f)
|
15 |
-
with open(os.path.join(MODEL_DIR, "language_mappings.json")) as f:
|
16 |
-
mappings = json.load(f)
|
17 |
-
id_to_language = {int(k): v for k, v in mappings["id_to_language"].items()}
|
18 |
-
|
19 |
-
config = AudioLanguageClassifierConfig(**config_dict)
|
20 |
-
model = AudioLanguageClassifier(config)
|
21 |
-
model.load_state_dict(torch.load(os.path.join(MODEL_DIR, "model.pt"), map_location="cpu"))
|
22 |
-
model.eval()
|
23 |
-
|
24 |
-
feature_extractor = AudioFeatureExtractor(config)
|
25 |
-
max_length = 256 # Or whatever you used in training
|
26 |
|
27 |
def predict_language(audio):
|
28 |
-
|
29 |
-
#
|
30 |
-
|
31 |
-
waveform = torchaudio.transforms.Resample(sample_rate, 16000)(waveform)
|
32 |
-
if waveform.shape[0] > 1:
|
33 |
-
waveform = torch.mean(waveform, dim=0, keepdim=True)
|
34 |
-
features = feature_extractor(waveform)
|
35 |
-
input_values = features["input_values"]
|
36 |
-
_, height, width = input_values.shape
|
37 |
-
# Pad/truncate
|
38 |
-
if width < max_length:
|
39 |
-
padding = torch.zeros(1, height, max_length - width)
|
40 |
-
input_values = torch.cat([input_values, padding], dim=2)
|
41 |
-
elif width > max_length:
|
42 |
-
input_values = input_values[:, :, :max_length]
|
43 |
-
with torch.no_grad():
|
44 |
-
outputs = model(input_values=input_values)
|
45 |
-
logits = outputs["logits"]
|
46 |
-
probs = torch.nn.functional.softmax(logits, dim=1)[0]
|
47 |
-
top_probs, top_ids = torch.topk(probs, 3)
|
48 |
-
results = []
|
49 |
-
for prob, pred_id in zip(top_probs, top_ids):
|
50 |
-
lang = id_to_language[pred_id.item()]
|
51 |
-
results.append(f"{lang}: {prob.item():.2f}")
|
52 |
-
return "\n".join(results)
|
53 |
|
54 |
demo = gr.Interface(
|
55 |
fn=predict_language,
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import pipeline
|
|
|
|
|
|
|
3 |
|
4 |
+
classifier = pipeline("audio-classification", model="hriteshMaikap/languageClassifier")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
def predict_language(audio):
|
7 |
+
out = classifier(audio)
|
8 |
+
# out is a list of dicts: [{'label': 'Hindi', 'score': 0.98}, ...]
|
9 |
+
return "\n".join([f"{res['label']}: {res['score']:.2f}" for res in out])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
demo = gr.Interface(
|
12 |
fn=predict_language,
|