Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
@@ -1,273 +1,63 @@
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
-
import torch.nn as nn
|
4 |
import torchaudio
|
5 |
import json
|
6 |
-
import
|
7 |
-
|
8 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
-
# Define model architecture
|
11 |
-
class AudioLanguageClassifierConfig(PretrainedConfig):
|
12 |
-
model_type = "audio-language-classifier"
|
13 |
-
|
14 |
-
def __init__(
|
15 |
-
self,
|
16 |
-
num_labels=10, # Changed from 12 to 10 to match the saved model
|
17 |
-
sampling_rate=16000,
|
18 |
-
num_mel_bins=128,
|
19 |
-
feature_size=512,
|
20 |
-
num_transformer_layers=4,
|
21 |
-
num_attention_heads=4,
|
22 |
-
intermediate_size=1024,
|
23 |
-
hidden_dropout_prob=0.1,
|
24 |
-
attention_probs_dropout_prob=0.1,
|
25 |
-
**kwargs
|
26 |
-
):
|
27 |
-
super().__init__(**kwargs)
|
28 |
-
self.num_labels = num_labels
|
29 |
-
self.sampling_rate = sampling_rate
|
30 |
-
self.num_mel_bins = num_mel_bins
|
31 |
-
self.feature_size = feature_size
|
32 |
-
self.num_transformer_layers = num_transformer_layers
|
33 |
-
self.num_attention_heads = num_attention_heads
|
34 |
-
self.intermediate_size = intermediate_size
|
35 |
-
self.hidden_dropout_prob = hidden_dropout_prob
|
36 |
-
self.attention_probs_dropout_prob = attention_probs_dropout_prob
|
37 |
-
|
38 |
-
class AudioFeatureExtractor:
|
39 |
-
def __init__(self, config):
|
40 |
-
self.config = config
|
41 |
-
self.mel_spectrogram = torchaudio.transforms.MelSpectrogram(
|
42 |
-
sample_rate=config.sampling_rate,
|
43 |
-
n_fft=1024,
|
44 |
-
hop_length=512,
|
45 |
-
n_mels=config.num_mel_bins
|
46 |
-
)
|
47 |
-
self.amplitude_to_db = torchaudio.transforms.AmplitudeToDB()
|
48 |
-
|
49 |
-
def __call__(self, audio_data, padding=True, max_length=None, truncation=True, **kwargs):
|
50 |
-
if isinstance(audio_data, np.ndarray):
|
51 |
-
audio_data = torch.from_numpy(audio_data)
|
52 |
-
|
53 |
-
# Ensure it's in the expected shape
|
54 |
-
if audio_data.ndim == 1:
|
55 |
-
audio_data = audio_data.unsqueeze(0) # Add channel dimension
|
56 |
-
|
57 |
-
# Convert to mel spectrogram
|
58 |
-
mel_spec = self.mel_spectrogram(audio_data)
|
59 |
-
log_mel_spec = self.amplitude_to_db(mel_spec)
|
60 |
-
|
61 |
-
# Normalization
|
62 |
-
mean = log_mel_spec.mean()
|
63 |
-
std = log_mel_spec.std()
|
64 |
-
log_mel_spec = (log_mel_spec - mean) / (std + 1e-10)
|
65 |
-
|
66 |
-
# Handle max length/truncation
|
67 |
-
if max_length is not None and truncation and log_mel_spec.shape[-1] > max_length:
|
68 |
-
log_mel_spec = log_mel_spec[..., :max_length]
|
69 |
-
|
70 |
-
return {"input_values": log_mel_spec}
|
71 |
-
|
72 |
-
class AudioLanguageClassifier(PreTrainedModel):
|
73 |
-
config_class = AudioLanguageClassifierConfig
|
74 |
-
|
75 |
-
def __init__(self, config):
|
76 |
-
super().__init__(config)
|
77 |
-
self.config = config
|
78 |
-
|
79 |
-
# CNN feature extractor
|
80 |
-
self.feature_extractor = nn.Sequential(
|
81 |
-
nn.Conv2d(1, 32, kernel_size=3, stride=1, padding=1),
|
82 |
-
nn.ReLU(),
|
83 |
-
nn.MaxPool2d(2, 2),
|
84 |
-
nn.Conv2d(32, 64, kernel_size=3, stride=1, padding=1),
|
85 |
-
nn.ReLU(),
|
86 |
-
nn.MaxPool2d(2, 2)
|
87 |
-
)
|
88 |
-
|
89 |
-
# Global average pooling to eliminate size dependency
|
90 |
-
self.global_pool = nn.AdaptiveAvgPool2d((4, 4))
|
91 |
-
|
92 |
-
# Fixed size after global pooling
|
93 |
-
self.flattened_size = 64 * 4 * 4
|
94 |
-
|
95 |
-
# Projection layer with fixed input size
|
96 |
-
self.projection = nn.Linear(self.flattened_size, config.feature_size)
|
97 |
-
|
98 |
-
# Transformer for sequence modeling
|
99 |
-
encoder_layer = nn.TransformerEncoderLayer(
|
100 |
-
d_model=config.feature_size,
|
101 |
-
nhead=config.num_attention_heads,
|
102 |
-
dim_feedforward=config.intermediate_size,
|
103 |
-
dropout=config.hidden_dropout_prob,
|
104 |
-
batch_first=True
|
105 |
-
)
|
106 |
-
self.transformer_encoder = nn.TransformerEncoder(
|
107 |
-
encoder_layer,
|
108 |
-
num_layers=config.num_transformer_layers
|
109 |
-
)
|
110 |
-
|
111 |
-
# Classification head
|
112 |
-
self.classifier = nn.Linear(config.feature_size, config.num_labels)
|
113 |
-
|
114 |
-
def forward(
|
115 |
-
self,
|
116 |
-
input_values=None,
|
117 |
-
labels=None,
|
118 |
-
**kwargs
|
119 |
-
):
|
120 |
-
batch_size = input_values.size(0)
|
121 |
-
|
122 |
-
# Extract features using CNN
|
123 |
-
x = self.feature_extractor(input_values)
|
124 |
-
|
125 |
-
# Apply global pooling to get fixed size
|
126 |
-
x = self.global_pool(x)
|
127 |
-
|
128 |
-
# Flatten
|
129 |
-
x = x.view(batch_size, -1)
|
130 |
-
|
131 |
-
# Project to transformer dimension
|
132 |
-
x = self.projection(x)
|
133 |
-
|
134 |
-
# Add sequence dimension for transformer
|
135 |
-
x = x.unsqueeze(1) # [batch_size, 1, feature_size]
|
136 |
-
|
137 |
-
# Transformer encoding
|
138 |
-
x = self.transformer_encoder(x)
|
139 |
-
|
140 |
-
# Classification
|
141 |
-
x = x[:, 0, :] # Take first token representation
|
142 |
-
logits = self.classifier(x)
|
143 |
-
|
144 |
-
loss = None
|
145 |
-
if labels is not None:
|
146 |
-
loss_fct = nn.CrossEntropyLoss()
|
147 |
-
loss = loss_fct(logits, labels)
|
148 |
-
|
149 |
-
return {"loss": loss, "logits": logits} if loss is not None else {"logits": logits}
|
150 |
-
|
151 |
-
# Function to load the model and its configuration
|
152 |
-
def load_model():
|
153 |
-
# Download the model files
|
154 |
-
repo_id = "hriteshMaikap/languageClassifier"
|
155 |
-
|
156 |
-
try:
|
157 |
-
model_path = hf_hub_download(repo_id=repo_id, filename="model.pt")
|
158 |
-
config_path = hf_hub_download(repo_id=repo_id, filename="config.json")
|
159 |
-
mappings_path = hf_hub_download(repo_id=repo_id, filename="language_mappings.json")
|
160 |
-
|
161 |
-
# Load the config
|
162 |
-
with open(config_path, "r") as f:
|
163 |
-
config_dict = json.load(f)
|
164 |
-
|
165 |
-
# IMPORTANT: Override num_labels to 10 since the model was trained with 10 classes
|
166 |
-
config_dict["num_labels"] = 10
|
167 |
-
|
168 |
-
config = AudioLanguageClassifierConfig(**config_dict)
|
169 |
-
|
170 |
-
# Load the model
|
171 |
-
model = AudioLanguageClassifier(config)
|
172 |
-
model.load_state_dict(torch.load(model_path, map_location=torch.device('cpu')))
|
173 |
-
model.eval()
|
174 |
-
|
175 |
-
# Load language mappings
|
176 |
-
with open(mappings_path, "r") as f:
|
177 |
-
mappings = json.load(f)
|
178 |
-
|
179 |
-
id_to_language = {int(k): v for k, v in mappings["id_to_language"].items()}
|
180 |
-
|
181 |
-
return model, config, id_to_language
|
182 |
-
|
183 |
-
except Exception as e:
|
184 |
-
gr.Warning(f"Error loading model: {e}")
|
185 |
-
# Return placeholders with error message
|
186 |
-
raise gr.Error(f"Failed to load the language classification model: {e}")
|
187 |
-
|
188 |
-
# Function to process audio and make predictions
|
189 |
-
def classify_language(audio):
|
190 |
-
try:
|
191 |
-
# Load model on first inference
|
192 |
-
global model, config, id_to_language, feature_extractor
|
193 |
-
if 'model' not in globals() or model is None:
|
194 |
-
model, config, id_to_language = load_model()
|
195 |
-
feature_extractor = AudioFeatureExtractor(config)
|
196 |
-
|
197 |
-
# Get audio data
|
198 |
-
sr, waveform = audio
|
199 |
-
|
200 |
-
# Convert to torch tensor
|
201 |
-
waveform = torch.tensor(waveform).float()
|
202 |
-
|
203 |
-
# Ensure mono
|
204 |
-
if waveform.ndim > 1 and waveform.shape[0] > 1:
|
205 |
-
waveform = torch.mean(waveform, dim=0, keepdim=True)
|
206 |
-
elif waveform.ndim == 1:
|
207 |
-
waveform = waveform.unsqueeze(0)
|
208 |
-
|
209 |
-
# Resample to 16kHz if needed
|
210 |
-
if sr != 16000:
|
211 |
-
resampler = torchaudio.transforms.Resample(sr, 16000)
|
212 |
-
waveform = resampler(waveform)
|
213 |
-
|
214 |
-
# Extract features
|
215 |
-
features = feature_extractor(waveform, max_length=256)
|
216 |
-
input_values = features["input_values"]
|
217 |
-
|
218 |
-
# Pad or truncate to fixed length
|
219 |
-
_, height, width = input_values.shape
|
220 |
-
max_length = 256
|
221 |
-
if width < max_length:
|
222 |
-
padding = torch.zeros(1, height, max_length - width)
|
223 |
-
input_values = torch.cat([input_values, padding], dim=2)
|
224 |
-
elif width > max_length:
|
225 |
-
input_values = input_values[:, :, :max_length]
|
226 |
-
|
227 |
-
# Get prediction
|
228 |
-
with torch.no_grad():
|
229 |
-
outputs = model(input_values=input_values)
|
230 |
-
logits = outputs["logits"]
|
231 |
-
probs = torch.nn.functional.softmax(logits, dim=1)[0]
|
232 |
-
|
233 |
-
# Get top predictions
|
234 |
-
num_classes = min(3, len(id_to_language))
|
235 |
-
top_probs, top_ids = torch.topk(probs, num_classes)
|
236 |
-
|
237 |
-
# Format results
|
238 |
-
results = {}
|
239 |
-
for i, (prob, pred_id) in enumerate(zip(top_probs, top_ids)):
|
240 |
-
lang = id_to_language.get(pred_id.item(), f"Unknown-{pred_id.item()}")
|
241 |
-
results[lang] = float(prob)
|
242 |
-
|
243 |
-
return results
|
244 |
-
|
245 |
-
except Exception as e:
|
246 |
-
return {"Error": 1.0, "Details": str(e)}
|
247 |
-
|
248 |
-
# Create the Gradio interface
|
249 |
demo = gr.Interface(
|
250 |
-
fn=
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
description="Record or upload audio to identify the Indian language being spoken.",
|
256 |
-
examples=[],
|
257 |
-
article="""
|
258 |
-
<div style="text-align: center;">
|
259 |
-
<p>This model identifies various Indian languages from audio input. For best results:</p>
|
260 |
-
<ul style="display: inline-block; text-align: left;">
|
261 |
-
<li>Speak clearly with minimal background noise</li>
|
262 |
-
<li>Recording length of 3-5 seconds is ideal</li>
|
263 |
-
<li>Make sure to speak a full sentence or phrase</li>
|
264 |
-
</ul>
|
265 |
-
</div>
|
266 |
-
"""
|
267 |
)
|
268 |
|
269 |
-
# Launch the app
|
270 |
if __name__ == "__main__":
|
271 |
-
# Initialize model as None to lazy-load on first inference
|
272 |
-
model, config, id_to_language, feature_extractor = None, None, None, None
|
273 |
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
import torch
|
|
|
3 |
import torchaudio
|
4 |
import json
|
5 |
+
import os
|
6 |
+
|
7 |
+
# Import your model architecture
|
8 |
+
from model import AudioLanguageClassifier, AudioLanguageClassifierConfig, AudioFeatureExtractor
|
9 |
+
|
10 |
+
MODEL_DIR = "."
|
11 |
+
|
12 |
+
# Load config and mappings
|
13 |
+
with open(os.path.join(MODEL_DIR, "config.json")) as f:
|
14 |
+
config_dict = json.load(f)
|
15 |
+
with open(os.path.join(MODEL_DIR, "language_mappings.json")) as f:
|
16 |
+
mappings = json.load(f)
|
17 |
+
id_to_language = {int(k): v for k, v in mappings["id_to_language"].items()}
|
18 |
+
|
19 |
+
config = AudioLanguageClassifierConfig(**config_dict)
|
20 |
+
model = AudioLanguageClassifier(config)
|
21 |
+
model.load_state_dict(torch.load(os.path.join(MODEL_DIR, "model.pt"), map_location="cpu"))
|
22 |
+
model.eval()
|
23 |
+
|
24 |
+
feature_extractor = AudioFeatureExtractor(config)
|
25 |
+
max_length = 256 # Or whatever you used in training
|
26 |
+
|
27 |
+
def predict_language(audio):
|
28 |
+
waveform, sample_rate = torchaudio.load(audio)
|
29 |
+
# Resample and mono
|
30 |
+
if sample_rate != 16000:
|
31 |
+
waveform = torchaudio.transforms.Resample(sample_rate, 16000)(waveform)
|
32 |
+
if waveform.shape[0] > 1:
|
33 |
+
waveform = torch.mean(waveform, dim=0, keepdim=True)
|
34 |
+
features = feature_extractor(waveform)
|
35 |
+
input_values = features["input_values"]
|
36 |
+
_, height, width = input_values.shape
|
37 |
+
# Pad/truncate
|
38 |
+
if width < max_length:
|
39 |
+
padding = torch.zeros(1, height, max_length - width)
|
40 |
+
input_values = torch.cat([input_values, padding], dim=2)
|
41 |
+
elif width > max_length:
|
42 |
+
input_values = input_values[:, :, :max_length]
|
43 |
+
with torch.no_grad():
|
44 |
+
outputs = model(input_values=input_values)
|
45 |
+
logits = outputs["logits"]
|
46 |
+
probs = torch.nn.functional.softmax(logits, dim=1)[0]
|
47 |
+
top_probs, top_ids = torch.topk(probs, 3)
|
48 |
+
results = []
|
49 |
+
for prob, pred_id in zip(top_probs, top_ids):
|
50 |
+
lang = id_to_language[pred_id.item()]
|
51 |
+
results.append(f"{lang}: {prob.item():.2f}")
|
52 |
+
return "\n".join(results)
|
53 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
demo = gr.Interface(
|
55 |
+
fn=predict_language,
|
56 |
+
inputs=gr.Audio(source="microphone", type="filepath"),
|
57 |
+
outputs="text",
|
58 |
+
title="Indian Language Identifier",
|
59 |
+
description="Record audio and classify the spoken Indian language."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
)
|
61 |
|
|
|
62 |
if __name__ == "__main__":
|
|
|
|
|
63 |
demo.launch()
|