Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,27 +1,31 @@
|
|
1 |
import gradio as gr
|
2 |
-
from transformers import pipeline
|
3 |
|
4 |
-
#
|
5 |
pipe = pipeline(
|
6 |
task="image-classification",
|
7 |
model="hchcsuim/FaceAIorNot"
|
8 |
)
|
9 |
|
10 |
-
#
|
11 |
def predict(input_img):
|
12 |
predictions = pipe(input_img)
|
13 |
return input_img, {p["label"]: p["score"] for p in predictions}
|
14 |
|
15 |
-
#
|
16 |
gradio_app = gr.Interface(
|
17 |
fn=predict,
|
18 |
-
inputs=gr.Image(label="
|
19 |
outputs=[
|
20 |
-
gr.Image(label="輸入圖片"),
|
21 |
-
gr.Label(label="判斷結果", num_top_classes=2)
|
22 |
],
|
23 |
-
title="FaceAIorNot",
|
24 |
-
description=
|
|
|
|
|
|
|
|
|
25 |
)
|
26 |
|
27 |
if __name__ == "__main__":
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import pipeline
|
3 |
|
4 |
+
# 建立 image-classification pipeline,使用 FaceAIorNot 模型
|
5 |
pipe = pipeline(
|
6 |
task="image-classification",
|
7 |
model="hchcsuim/FaceAIorNot"
|
8 |
)
|
9 |
|
10 |
+
# 預測函數:回傳圖片和分類結果
|
11 |
def predict(input_img):
|
12 |
predictions = pipe(input_img)
|
13 |
return input_img, {p["label"]: p["score"] for p in predictions}
|
14 |
|
15 |
+
# Gradio 介面設定(雙語版)
|
16 |
gradio_app = gr.Interface(
|
17 |
fn=predict,
|
18 |
+
inputs=gr.Image(label="📸 Select / Upload Face Photo 選擇或上傳臉部照片", sources=["upload", "webcam"], type="pil"),
|
19 |
outputs=[
|
20 |
+
gr.Image(label="🖼️ Input Image / 輸入圖片"),
|
21 |
+
gr.Label(label="🔍 Classification Result / 判斷結果", num_top_classes=2)
|
22 |
],
|
23 |
+
title="FaceAIorNot | 真人臉,還是 AI 生成臉?",
|
24 |
+
description=(
|
25 |
+
"🤖 Upload or take a face photo to see if it's AI-generated or real.\n"
|
26 |
+
"🧑 上傳或拍攝一張臉部照片,判斷是真人還是 AI 合成圖。"
|
27 |
+
),
|
28 |
+
allow_flagging="never"
|
29 |
)
|
30 |
|
31 |
if __name__ == "__main__":
|