Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,18 +1,28 @@
|
|
1 |
import gradio as gr
|
2 |
-
from transformers import pipeline
|
3 |
|
4 |
-
|
|
|
|
|
|
|
|
|
5 |
|
|
|
6 |
def predict(input_img):
|
7 |
-
predictions =
|
8 |
-
return input_img, {p["label"]: p["score"] for p in predictions}
|
9 |
|
|
|
10 |
gradio_app = gr.Interface(
|
11 |
-
predict,
|
12 |
-
inputs=gr.Image(label="
|
13 |
-
outputs=[
|
14 |
-
|
|
|
|
|
|
|
|
|
15 |
)
|
16 |
|
17 |
if __name__ == "__main__":
|
18 |
-
gradio_app.launch()
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import pipeline, AutoImageProcessor, AutoModelForImageClassification
|
3 |
|
4 |
+
# 使用 FaceAIorNot 模型初始化 pipeline
|
5 |
+
pipe = pipeline(
|
6 |
+
task="image-classification",
|
7 |
+
model="hchcsuim/FaceAIorNot"
|
8 |
+
)
|
9 |
|
10 |
+
# 預測函數
|
11 |
def predict(input_img):
|
12 |
+
predictions = pipe(input_img)
|
13 |
+
return input_img, {p["label"]: p["score"] for p in predictions}
|
14 |
|
15 |
+
# 建立 Gradio 介面
|
16 |
gradio_app = gr.Interface(
|
17 |
+
fn=predict,
|
18 |
+
inputs=gr.Image(label="上傳或拍攝臉部照片", sources=['upload', 'webcam'], type="pil"),
|
19 |
+
outputs=[
|
20 |
+
gr.Image(label="輸入圖片"),
|
21 |
+
gr.Label(label="判斷結果", num_top_classes=2)
|
22 |
+
],
|
23 |
+
title="FaceAIorNot",
|
24 |
+
description="上傳或拍攝一張臉部照片,判斷是否為 AI 生成的人臉"
|
25 |
)
|
26 |
|
27 |
if __name__ == "__main__":
|
28 |
+
gradio_app.launch()
|