Spaces:
Sleeping
Sleeping
import cv2 | |
import torch | |
import numpy as np | |
from PIL import Image | |
from torchvision import models, transforms | |
from ultralytics import YOLO | |
import gradio as gr | |
import torch.nn as nn | |
# Initialize device | |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
# Load models | |
yolo_model = YOLO('best.pt') # Make sure this file is uploaded to your Space | |
resnet = models.resnet50(pretrained=False) | |
# Modify ResNet for 3 classes | |
resnet.fc = nn.Linear(resnet.fc.in_features, 3) | |
resnet.load_state_dict(torch.load('rice_resnet_model.pth', map_location=device)) | |
resnet = resnet.to(device) | |
resnet.eval() | |
# Class labels | |
class_labels = ["c9", "kant", "superf"] | |
# Image transformations | |
transform = transforms.Compose([ | |
transforms.Resize((224, 224)), | |
transforms.ToTensor(), | |
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) | |
]) | |
def classify_crop(crop_img): | |
"""Classify a single rice grain""" | |
image = transform(crop_img).unsqueeze(0).to(device) | |
with torch.no_grad(): | |
output = resnet(image) | |
_, predicted = torch.max(output, 1) | |
return class_labels[predicted.item()] | |
def detect_and_classify(image): | |
"""Process full image with YOLO + ResNet""" | |
image = np.array(image) | |
results = yolo_model(image)[0] | |
boxes = results.boxes.xyxy.cpu().numpy() | |
for box in boxes: | |
x1, y1, x2, y2 = map(int, box[:4]) | |
crop = image[y1:y2, x1:x2] | |
crop_pil = Image.fromarray(cv2.cvtColor(crop, cv2.COLOR_BGR2RGB)) | |
predicted_label = classify_crop(crop_pil) | |
# Draw bounding box and label | |
cv2.rectangle(image, (x1, y1), (x2, y2), (0, 255, 0), 2) | |
cv2.putText(image, predicted_label, (x1, y1-10), | |
cv2.FONT_HERSHEY_SIMPLEX, 0.9, (36, 255, 12), 2) | |
return Image.fromarray(cv2.cvtColor(image, cv2.COLOR_BGR2RGB)) | |
# Gradio Interface | |
with gr.Blocks(title="چاول کا شناختی نظام") as demo: | |
gr.Markdown(""" | |
# چاول کا شناختی نظام | |
ایک تصویر اپ لوڈ کریں جس میں چاول کے دانے ہوں۔ نظام ہر دانے کو پہچان کر اس کی قسم بتائے گا۔ | |
""") | |
with gr.Row(): | |
input_image = gr.Image(type="pil", label="تصویر داخل کریں") | |
output_image = gr.Image(type="pil", label="نتیجہ") | |
submit_btn = gr.Button("تشخیص کریں") | |
submit_btn.click( | |
fn=detect_and_classify, | |
inputs=input_image, | |
outputs=output_image | |
) | |
gr.Examples( | |
examples=[["example1.jpg"], ["example2.jpg"]], # Add your example images | |
inputs=input_image, | |
outputs=output_image, | |
fn=detect_and_classify, | |
cache_examples=True | |
) | |
demo.launch() |