Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -0,0 +1,86 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
import torch
|
3 |
+
import numpy as np
|
4 |
+
from PIL import Image
|
5 |
+
from torchvision import models, transforms
|
6 |
+
from ultralytics import YOLO
|
7 |
+
import gradio as gr
|
8 |
+
import torch.nn as nn
|
9 |
+
|
10 |
+
# Initialize device
|
11 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
12 |
+
|
13 |
+
# Load models
|
14 |
+
yolo_model = YOLO('best.pt') # Make sure this file is uploaded to your Space
|
15 |
+
resnet = models.resnet50(pretrained=False)
|
16 |
+
|
17 |
+
# Modify ResNet for 3 classes
|
18 |
+
resnet.fc = nn.Linear(resnet.fc.in_features, 3)
|
19 |
+
resnet.load_state_dict(torch.load('rice_resnet_model.pth', map_location=device))
|
20 |
+
resnet = resnet.to(device)
|
21 |
+
resnet.eval()
|
22 |
+
|
23 |
+
# Class labels
|
24 |
+
class_labels = ["c9", "kant", "superf"]
|
25 |
+
|
26 |
+
# Image transformations
|
27 |
+
transform = transforms.Compose([
|
28 |
+
transforms.Resize((224, 224)),
|
29 |
+
transforms.ToTensor(),
|
30 |
+
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
|
31 |
+
])
|
32 |
+
|
33 |
+
def classify_crop(crop_img):
|
34 |
+
"""Classify a single rice grain"""
|
35 |
+
image = transform(crop_img).unsqueeze(0).to(device)
|
36 |
+
with torch.no_grad():
|
37 |
+
output = resnet(image)
|
38 |
+
_, predicted = torch.max(output, 1)
|
39 |
+
return class_labels[predicted.item()]
|
40 |
+
|
41 |
+
def detect_and_classify(image):
|
42 |
+
"""Process full image with YOLO + ResNet"""
|
43 |
+
image = np.array(image)
|
44 |
+
results = yolo_model(image)[0]
|
45 |
+
boxes = results.boxes.xyxy.cpu().numpy()
|
46 |
+
|
47 |
+
for box in boxes:
|
48 |
+
x1, y1, x2, y2 = map(int, box[:4])
|
49 |
+
crop = image[y1:y2, x1:x2]
|
50 |
+
crop_pil = Image.fromarray(cv2.cvtColor(crop, cv2.COLOR_BGR2RGB))
|
51 |
+
predicted_label = classify_crop(crop_pil)
|
52 |
+
|
53 |
+
# Draw bounding box and label
|
54 |
+
cv2.rectangle(image, (x1, y1), (x2, y2), (0, 255, 0), 2)
|
55 |
+
cv2.putText(image, predicted_label, (x1, y1-10),
|
56 |
+
cv2.FONT_HERSHEY_SIMPLEX, 0.9, (36, 255, 12), 2)
|
57 |
+
|
58 |
+
return Image.fromarray(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
|
59 |
+
|
60 |
+
# Gradio Interface
|
61 |
+
with gr.Blocks(title="چاول کا شناختی نظام") as demo:
|
62 |
+
gr.Markdown("""
|
63 |
+
# چاول کا شناختی نظام
|
64 |
+
ایک تصویر اپ لوڈ کریں جس میں چاول کے دانے ہوں۔ نظام ہر دانے کو پہچان کر اس کی قسم بتائے گا۔
|
65 |
+
""")
|
66 |
+
|
67 |
+
with gr.Row():
|
68 |
+
input_image = gr.Image(type="pil", label="تصویر داخل کریں")
|
69 |
+
output_image = gr.Image(type="pil", label="نتیجہ")
|
70 |
+
|
71 |
+
submit_btn = gr.Button("تشخیص کریں")
|
72 |
+
submit_btn.click(
|
73 |
+
fn=detect_and_classify,
|
74 |
+
inputs=input_image,
|
75 |
+
outputs=output_image
|
76 |
+
)
|
77 |
+
|
78 |
+
gr.Examples(
|
79 |
+
examples=[["example1.jpg"], ["example2.jpg"]], # Add your example images
|
80 |
+
inputs=input_image,
|
81 |
+
outputs=output_image,
|
82 |
+
fn=detect_and_classify,
|
83 |
+
cache_examples=True
|
84 |
+
)
|
85 |
+
|
86 |
+
demo.launch()
|