|
|
|
|
|
|
|
|
|
|
|
import asyncio |
|
import codecs |
|
import docx |
|
import gradio as gr |
|
import httpx |
|
import json |
|
import os |
|
import pandas as pd |
|
import pdfplumber |
|
import pytesseract |
|
import random |
|
import requests |
|
import threading |
|
import uuid |
|
import zipfile |
|
import io |
|
|
|
from PIL import Image |
|
from pathlib import Path |
|
from pptx import Presentation |
|
from openpyxl import load_workbook |
|
|
|
os.system("apt-get update -q -y && apt-get install -q -y tesseract-ocr tesseract-ocr-eng tesseract-ocr-ind libleptonica-dev libtesseract-dev") |
|
|
|
JARVIS_INIT = json.loads(os.getenv("HELLO", "[]")) |
|
|
|
DEEP_SEARCH_PROVIDER_HOST = os.getenv("DEEP_SEARCH_PROVIDER_HOST") |
|
DEEP_SEARCH_PROVIDER_KEY = os.getenv('DEEP_SEARCH_PROVIDER_KEY') |
|
DEEP_SEARCH_INSTRUCTIONS = os.getenv("DEEP_SEARCH_INSTRUCTIONS") |
|
|
|
INTERNAL_AI_GET_SERVER = os.getenv("INTERNAL_AI_GET_SERVER") |
|
INTERNAL_AI_INSTRUCTIONS = os.getenv("INTERNAL_TRAINING_DATA") |
|
|
|
SYSTEM_PROMPT_MAPPING = json.loads(os.getenv("SYSTEM_PROMPT_MAPPING", "{}")) |
|
SYSTEM_PROMPT_DEFAULT = os.getenv("DEFAULT_SYSTEM") |
|
|
|
LINUX_SERVER_HOSTS = [h for h in json.loads(os.getenv("LINUX_SERVER_HOST", "[]")) if h] |
|
|
|
LINUX_SERVER_PROVIDER_KEYS = [k for k in json.loads(os.getenv("LINUX_SERVER_PROVIDER_KEY", "[]")) if k] |
|
LINUX_SERVER_PROVIDER_KEYS_MARKED = set() |
|
LINUX_SERVER_PROVIDER_KEYS_ATTEMPTS = {} |
|
|
|
LINUX_SERVER_ERRORS = set(map(int, os.getenv("LINUX_SERVER_ERROR", "").split(","))) |
|
|
|
AI_TYPES = {f"AI_TYPE_{i}": os.getenv(f"AI_TYPE_{i}") for i in range(1, 10)} |
|
|
|
RESPONSES = {f"RESPONSE_{i}": os.getenv(f"RESPONSE_{i}") for i in range(1, 11)} |
|
|
|
MODEL_MAPPING = json.loads(os.getenv("MODEL_MAPPING", "{}")) |
|
MODEL_CONFIG = json.loads(os.getenv("MODEL_CONFIG", "{}")) |
|
MODEL_CHOICES = list(MODEL_MAPPING.values()) |
|
|
|
DEFAULT_CONFIG = json.loads(os.getenv("DEFAULT_CONFIG", "{}")) |
|
DEFAULT_MODEL_KEY = list(MODEL_MAPPING.keys())[0] if MODEL_MAPPING else None |
|
|
|
META_TAGS = os.getenv("META_TAGS") |
|
|
|
ALLOWED_EXTENSIONS = json.loads(os.getenv("ALLOWED_EXTENSIONS", "[]")) |
|
|
|
class SessionWithID(requests.Session): |
|
def __init__(sess): |
|
super().__init__() |
|
sess.session_id = str(uuid.uuid4()) |
|
sess.stop_event = asyncio.Event() |
|
sess.cancel_token = {"cancelled": False} |
|
|
|
def create_session(): |
|
return SessionWithID() |
|
|
|
def ensure_stop_event(sess): |
|
if not hasattr(sess, "stop_event"): |
|
sess.stop_event = asyncio.Event() |
|
if not hasattr(sess, "cancel_token"): |
|
sess.cancel_token = {"cancelled": False} |
|
|
|
def marked_item(item, marked, attempts): |
|
marked.add(item) |
|
attempts[item] = attempts.get(item, 0) + 1 |
|
if attempts[item] >= 3: |
|
def remove(): |
|
marked.discard(item) |
|
attempts.pop(item, None) |
|
threading.Timer(300, remove).start() |
|
|
|
def get_model_key(display): |
|
return next((k for k, v in MODEL_MAPPING.items() if v == display), DEFAULT_MODEL_KEY) |
|
|
|
def extract_pdf_content(fp): |
|
content = "" |
|
try: |
|
with pdfplumber.open(fp) as pdf: |
|
for page in pdf.pages: |
|
text = page.extract_text() or "" |
|
content += text + "\n" |
|
if page.images: |
|
img_obj = page.to_image(resolution=300) |
|
for img in page.images: |
|
bbox = (img["x0"], img["top"], img["x1"], img["bottom"]) |
|
cropped = img_obj.original.crop(bbox) |
|
ocr_text = pytesseract.image_to_string(cropped) |
|
if ocr_text.strip(): |
|
content += ocr_text + "\n" |
|
tables = page.extract_tables() |
|
for table in tables: |
|
for row in table: |
|
cells = [str(cell) for cell in row if cell is not None] |
|
if cells: |
|
content += "\t".join(cells) + "\n" |
|
except Exception as e: |
|
content += f"{fp}: {e}" |
|
return content.strip() |
|
|
|
def extract_docx_content(fp): |
|
content = "" |
|
try: |
|
doc = docx.Document(fp) |
|
for para in doc.paragraphs: |
|
content += para.text + "\n" |
|
for table in doc.tables: |
|
for row in table.rows: |
|
cells = [cell.text for cell in row.cells] |
|
content += "\t".join(cells) + "\n" |
|
with zipfile.ZipFile(fp) as z: |
|
for file in z.namelist(): |
|
if file.startswith("word/media/"): |
|
data = z.read(file) |
|
try: |
|
img = Image.open(io.BytesIO(data)) |
|
ocr_text = pytesseract.image_to_string(img) |
|
if ocr_text.strip(): |
|
content += ocr_text + "\n" |
|
except: |
|
pass |
|
except Exception as e: |
|
content += f"{fp}: {e}" |
|
return content.strip() |
|
|
|
def extract_excel_content(fp): |
|
content = "" |
|
try: |
|
sheets = pd.read_excel(fp, sheet_name=None) |
|
for name, df in sheets.items(): |
|
content += f"Sheet: {name}\n" |
|
content += df.to_csv(index=False) + "\n" |
|
wb = load_workbook(fp, data_only=True) |
|
if wb._images: |
|
for image in wb._images: |
|
img = image.ref |
|
if isinstance(img, bytes): |
|
try: |
|
pil_img = Image.open(io.BytesIO(img)) |
|
ocr_text = pytesseract.image_to_string(pil_img) |
|
if ocr_text.strip(): |
|
content += ocr_text + "\n" |
|
except: |
|
pass |
|
except Exception as e: |
|
content += f"{fp}: {e}" |
|
return content.strip() |
|
|
|
def extract_pptx_content(fp): |
|
content = "" |
|
try: |
|
prs = Presentation(fp) |
|
for slide in prs.slides: |
|
for shape in slide.shapes: |
|
if hasattr(shape, "text") and shape.text: |
|
content += shape.text + "\n" |
|
if shape.shape_type == 13 and hasattr(shape, "image") and shape.image: |
|
try: |
|
img = Image.open(io.BytesIO(shape.image.blob)) |
|
ocr_text = pytesseract.image_to_string(img) |
|
if ocr_text.strip(): |
|
content += ocr_text + "\n" |
|
except: |
|
pass |
|
for shape in slide.shapes: |
|
if shape.has_table: |
|
table = shape.table |
|
for row in table.rows: |
|
cells = [cell.text for cell in row.cells] |
|
content += "\t".join(cells) + "\n" |
|
except Exception as e: |
|
content += f"{fp}: {e}" |
|
return content.strip() |
|
|
|
def extract_file_content(fp): |
|
ext = Path(fp).suffix.lower() |
|
if ext == ".pdf": |
|
return extract_pdf_content(fp) |
|
elif ext in [".doc", ".docx"]: |
|
return extract_docx_content(fp) |
|
elif ext in [".xlsx", ".xls"]: |
|
return extract_excel_content(fp) |
|
elif ext in [".ppt", ".pptx"]: |
|
return extract_pptx_content(fp) |
|
else: |
|
try: |
|
return Path(fp).read_text(encoding="utf-8").strip() |
|
except Exception as e: |
|
return f"{fp}: {e}" |
|
|
|
async def fetch_response_stream_async(host, key, model, msgs, cfg, sid, stop_event, cancel_token): |
|
for t in [5, 10]: |
|
try: |
|
async with httpx.AsyncClient(timeout=t) as client: |
|
async with client.stream("POST", host, json={**{"model": model, "messages": msgs, "session_id": sid, "stream": True}, **cfg}, headers={"Authorization": f"Bearer {key}"}) as response: |
|
if response.status_code in LINUX_SERVER_ERRORS: |
|
marked_item(key, LINUX_SERVER_PROVIDER_KEYS_MARKED, LINUX_SERVER_PROVIDER_KEYS_ATTEMPTS) |
|
return |
|
async for line in response.aiter_lines(): |
|
if stop_event.is_set() or cancel_token["cancelled"]: |
|
return |
|
if not line: |
|
continue |
|
if line.startswith("data: "): |
|
data = line[6:] |
|
if data.strip() == RESPONSES["RESPONSE_10"]: |
|
return |
|
try: |
|
j = json.loads(data) |
|
if isinstance(j, dict) and j.get("choices"): |
|
for ch in j["choices"]: |
|
delta = ch.get("delta", {}) |
|
if "reasoning" in delta and delta["reasoning"]: |
|
decoded = delta["reasoning"].encode('utf-8').decode('unicode_escape') |
|
yield ("reasoning", decoded) |
|
if "content" in delta and delta["content"]: |
|
yield ("content", delta["content"]) |
|
except: |
|
continue |
|
except: |
|
continue |
|
marked_item(key, LINUX_SERVER_PROVIDER_KEYS_MARKED, LINUX_SERVER_PROVIDER_KEYS_ATTEMPTS) |
|
return |
|
|
|
async def chat_with_model_async(history, user_input, model_display, sess, custom_prompt, deep_search): |
|
ensure_stop_event(sess) |
|
sess.stop_event.clear() |
|
sess.cancel_token["cancelled"] = False |
|
if not LINUX_SERVER_PROVIDER_KEYS or not LINUX_SERVER_HOSTS: |
|
yield ("content", RESPONSES["RESPONSE_3"]) |
|
return |
|
if not hasattr(sess, "session_id") or not sess.session_id: |
|
sess.session_id = str(uuid.uuid4()) |
|
model_key = get_model_key(model_display) |
|
cfg = MODEL_CONFIG.get(model_key, DEFAULT_CONFIG) |
|
msgs = [] |
|
if deep_search and model_display == MODEL_CHOICES[0]: |
|
msgs.append({"role": "system", "content": DEEP_SEARCH_INSTRUCTIONS}) |
|
try: |
|
async with httpx.AsyncClient() as client: |
|
payload = { |
|
"query": user_input, |
|
"topic": "general", |
|
"search_depth": "basic", |
|
"chunks_per_source": 5, |
|
"max_results": 5, |
|
"time_range": None, |
|
"days": 7, |
|
"include_answer": True, |
|
"include_raw_content": False, |
|
"include_images": False, |
|
"include_image_descriptions": False, |
|
"include_domains": [], |
|
"exclude_domains": [] |
|
} |
|
r = await client.post(DEEP_SEARCH_PROVIDER_HOST, headers={"Authorization": f"Bearer {DEEP_SEARCH_PROVIDER_KEY}"}, json=payload) |
|
sr_json = r.json() |
|
msgs.append({"role": "system", "content": json.dumps(sr_json)}) |
|
except: |
|
pass |
|
msgs.append({"role": "system", "content": INTERNAL_AI_INSTRUCTIONS}) |
|
elif model_display == MODEL_CHOICES[0]: |
|
msgs.append({"role": "system", "content": INTERNAL_AI_INSTRUCTIONS}) |
|
else: |
|
msgs.append({"role": "system", "content": custom_prompt or SYSTEM_PROMPT_MAPPING.get(model_key, SYSTEM_PROMPT_DEFAULT)}) |
|
msgs.extend([{"role": "user", "content": u} for u, _ in history] + [{"role": "assistant", "content": a} for _, a in history if a]) |
|
msgs.append({"role": "user", "content": user_input}) |
|
candidates = [(h, k) for h in LINUX_SERVER_HOSTS for k in LINUX_SERVER_PROVIDER_KEYS] |
|
random.shuffle(candidates) |
|
for h, k in candidates: |
|
stream_gen = fetch_response_stream_async(h, k, model_key, msgs, cfg, sess.session_id, sess.stop_event, sess.cancel_token) |
|
got_responses = False |
|
async for chunk in stream_gen: |
|
if sess.stop_event.is_set() or sess.cancel_token["cancelled"]: |
|
return |
|
got_responses = True |
|
yield chunk |
|
if got_responses: |
|
return |
|
yield ("content", RESPONSES["RESPONSE_2"]) |
|
|
|
async def respond_async(multi, history, model_display, sess, custom_prompt, deep_search): |
|
ensure_stop_event(sess) |
|
sess.stop_event.clear() |
|
sess.cancel_token["cancelled"] = False |
|
msg_input = {"text": multi.get("text", "").strip(), "files": multi.get("files", [])} |
|
if not msg_input["text"] and not msg_input["files"]: |
|
yield history, gr.update(value="", interactive=True, submit_btn=True, stop_btn=False), sess |
|
return |
|
inp = "" |
|
for f in msg_input["files"]: |
|
fp = f.get("data", f.get("name", "")) if isinstance(f, dict) else f |
|
inp += f"{Path(fp).name}\n\n{extract_file_content(fp)}\n\n" |
|
if msg_input["text"]: |
|
inp += msg_input["text"] |
|
history.append([inp, RESPONSES["RESPONSE_8"]]) |
|
yield history, gr.update(interactive=False, submit_btn=False, stop_btn=True), sess |
|
queue = asyncio.Queue() |
|
async def background(): |
|
reasoning = "" |
|
responses = "" |
|
content_started = False |
|
ignore_reasoning = False |
|
async for typ, chunk in chat_with_model_async(history, inp, model_display, sess, custom_prompt, deep_search): |
|
if sess.stop_event.is_set() or sess.cancel_token["cancelled"]: |
|
break |
|
if typ == "reasoning": |
|
if ignore_reasoning: |
|
continue |
|
reasoning += chunk |
|
await queue.put(("reasoning", reasoning)) |
|
elif typ == "content": |
|
if not content_started: |
|
content_started = True |
|
ignore_reasoning = True |
|
responses = chunk |
|
await queue.put(("reasoning", "")) |
|
await queue.put(("replace", responses)) |
|
else: |
|
responses += chunk |
|
await queue.put(("append", responses)) |
|
await queue.put(None) |
|
return responses |
|
bg_task = asyncio.create_task(background()) |
|
stop_task = asyncio.create_task(sess.stop_event.wait()) |
|
try: |
|
while True: |
|
done, _ = await asyncio.wait({stop_task, asyncio.create_task(queue.get())}, return_when=asyncio.FIRST_COMPLETED) |
|
if stop_task in done: |
|
sess.cancel_token["cancelled"] = True |
|
bg_task.cancel() |
|
history[-1][1] = RESPONSES["RESPONSE_1"] |
|
yield history, gr.update(value="", interactive=True, submit_btn=True, stop_btn=False), sess |
|
return |
|
for d in done: |
|
result = d.result() |
|
if result is None: |
|
raise StopAsyncIteration |
|
action, text = result |
|
history[-1][1] = text |
|
yield history, gr.update(interactive=False, submit_btn=False, stop_btn=True), sess |
|
except StopAsyncIteration: |
|
pass |
|
finally: |
|
stop_task.cancel() |
|
full_response = await bg_task |
|
yield history, gr.update(value="", interactive=True, submit_btn=True, stop_btn=False), sess |
|
|
|
def change_model(new): |
|
visible = new == MODEL_CHOICES[0] |
|
default = SYSTEM_PROMPT_MAPPING.get(get_model_key(new), SYSTEM_PROMPT_DEFAULT) |
|
return [], create_session(), new, default, False, gr.update(visible=visible) |
|
|
|
def stop_response(history, sess): |
|
ensure_stop_event(sess) |
|
sess.stop_event.set() |
|
sess.cancel_token["cancelled"] = True |
|
if history: |
|
history[-1][1] = RESPONSES["RESPONSE_1"] |
|
return history, None, create_session() |
|
|
|
with gr.Blocks(fill_height=True, fill_width=True, title=AI_TYPES["AI_TYPE_4"], head=META_TAGS) as jarvis: |
|
user_history = gr.State([]) |
|
user_session = gr.State(create_session()) |
|
selected_model = gr.State(MODEL_CHOICES[0] if MODEL_CHOICES else "") |
|
J_A_R_V_I_S = gr.State("") |
|
chatbot = gr.Chatbot(label=AI_TYPES["AI_TYPE_1"], show_copy_button=True, scale=1, elem_id=AI_TYPES["AI_TYPE_2"], examples=JARVIS_INIT) |
|
deep_search = gr.Checkbox(label=AI_TYPES["AI_TYPE_8"], value=False, info=AI_TYPES["AI_TYPE_9"], visible=True) |
|
msg = gr.MultimodalTextbox(show_label=False, placeholder=RESPONSES["RESPONSE_5"], interactive=True, file_count="single", file_types=ALLOWED_EXTENSIONS) |
|
with gr.Sidebar(open=False): |
|
model_radio = gr.Radio(show_label=False, choices=MODEL_CHOICES, value=MODEL_CHOICES[0]) |
|
model_radio.change(fn=change_model, inputs=[model_radio], outputs=[user_history, user_session, selected_model, J_A_R_V_I_S, deep_search, deep_search]) |
|
def on_example_select(evt: gr.SelectData): |
|
return evt.value |
|
chatbot.example_select(fn=on_example_select, inputs=[], outputs=[msg]).then(fn=respond_async, inputs=[msg, user_history, selected_model, user_session, J_A_R_V_I_S, deep_search], outputs=[chatbot, msg, user_session]) |
|
def clear_chat(history, sess, prompt, model): |
|
return [], create_session(), prompt, model, [] |
|
deep_search.change(fn=clear_chat, inputs=[user_history, user_session, J_A_R_V_I_S, selected_model], outputs=[chatbot, user_session, J_A_R_V_I_S, selected_model, user_history]) |
|
chatbot.clear(fn=clear_chat, inputs=[user_history, user_session, J_A_R_V_I_S, selected_model], outputs=[chatbot, user_session, J_A_R_V_I_S, selected_model, user_history]) |
|
msg.submit(fn=respond_async, inputs=[msg, user_history, selected_model, user_session, J_A_R_V_I_S, deep_search], outputs=[chatbot, msg, user_session], api_name=INTERNAL_AI_GET_SERVER) |
|
msg.stop(fn=stop_response, inputs=[user_history, user_session], outputs=[chatbot, msg, user_session]) |
|
jarvis.queue(default_concurrency_limit=2).launch(max_file_size="1mb") |
|
|