File size: 17,608 Bytes
29232b4
446e6d6
0d55539
29232b4
 
cdd78b7
452f16b
cdd78b7
5456854
cdd78b7
5456854
 
60f9e8e
cdd78b7
 
 
 
1ae1905
cdd78b7
fee4a44
 
92220a2
60f9e8e
cdd78b7
af424b9
fee4a44
af424b9
 
5456854
c27c217
 
5e49ce6
 
 
 
991dd3b
5e49ce6
e678e22
3ef53bc
 
 
 
1ae1905
3ef53bc
1ae1905
 
5456854
3ef53bc
23e5505
2aa87a7
be88a2b
 
5456854
 
 
3ef53bc
be88a2b
5456854
3ef53bc
5456854
 
 
cdd78b7
4901fb7
3ef53bc
18663e1
3ef53bc
18663e1
e864bae
 
3ef53bc
 
 
 
9209ef8
 
 
e864bae
 
9209ef8
1ae1905
 
 
 
3ef53bc
1ae1905
7bae676
3ef53bc
5456854
3ef53bc
 
5456854
fee4a44
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2ca3c02
fee4a44
 
 
 
 
 
 
af424b9
fee4a44
 
 
 
 
 
 
 
 
 
 
 
 
 
2ca3c02
fee4a44
af424b9
fee4a44
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2ca3c02
fee4a44
2ca3c02
 
 
 
 
 
fee4a44
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5456854
e864bae
22ad1c6
4943e2d
3ef53bc
be88a2b
a4cdda6
 
 
be88a2b
e864bae
96bc1c0
be88a2b
 
 
 
 
 
 
 
 
5990eed
 
e864bae
 
 
 
5990eed
be88a2b
 
3ef53bc
4943e2d
be88a2b
 
e0729bd
5e49ce6
18663e1
5b745df
e864bae
33cd3e2
5990eed
be88a2b
4f6f363
f4fd6dc
3ef53bc
 
5e49ce6
 
 
 
 
 
 
 
 
2aa87a7
 
5e49ce6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3ef53bc
e864bae
 
 
 
 
 
 
96bc1c0
e864bae
be88a2b
e864bae
 
 
5456854
5e49ce6
18663e1
9209ef8
e864bae
9209ef8
 
18663e1
62027e8
3ef53bc
9209ef8
18663e1
933e48c
9209ef8
 
 
18663e1
be88a2b
 
9a014e8
 
5990eed
9a014e8
5e49ce6
e864bae
6aae148
5990eed
9a014e8
c9018ef
9a014e8
 
c9018ef
5990eed
 
9a014e8
 
 
 
5990eed
9a014e8
 
be88a2b
9a014e8
be88a2b
b8dd135
be88a2b
 
 
 
e864bae
be88a2b
 
 
 
 
5990eed
 
be88a2b
5990eed
 
be88a2b
 
 
 
 
 
18663e1
5456854
3ef53bc
5e49ce6
3ef53bc
5e49ce6
5456854
9209ef8
18663e1
9209ef8
e864bae
9209ef8
 
e864bae
9209ef8
eb0a349
5456854
e29b7bd
cdd78b7
bb792fe
c27c217
2aa87a7
9209ef8
bb792fe
 
5e49ce6
c27c217
 
5e49ce6
 
 
 
 
 
9209ef8
cf21eef
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
#
# SPDX-FileCopyrightText: Hadad <[email protected]>
# SPDX-License-Identifier: Apache-2.0
#

import asyncio
import codecs
import docx
import gradio as gr
import httpx
import json
import os
import pandas as pd
import pdfplumber
import pytesseract
import random
import requests
import threading
import uuid
import zipfile
import io

from PIL import Image
from pathlib import Path
from pptx import Presentation
from openpyxl import load_workbook

os.system("apt-get update -q -y && apt-get install -q -y tesseract-ocr tesseract-ocr-eng tesseract-ocr-ind libleptonica-dev libtesseract-dev")

JARVIS_INIT = json.loads(os.getenv("HELLO", "[]"))

DEEP_SEARCH_PROVIDER_HOST = os.getenv("DEEP_SEARCH_PROVIDER_HOST")
DEEP_SEARCH_PROVIDER_KEY = os.getenv('DEEP_SEARCH_PROVIDER_KEY')
DEEP_SEARCH_INSTRUCTIONS = os.getenv("DEEP_SEARCH_INSTRUCTIONS")

INTERNAL_AI_GET_SERVER = os.getenv("INTERNAL_AI_GET_SERVER")
INTERNAL_AI_INSTRUCTIONS = os.getenv("INTERNAL_TRAINING_DATA")

SYSTEM_PROMPT_MAPPING = json.loads(os.getenv("SYSTEM_PROMPT_MAPPING", "{}"))
SYSTEM_PROMPT_DEFAULT = os.getenv("DEFAULT_SYSTEM")

LINUX_SERVER_HOSTS = [h for h in json.loads(os.getenv("LINUX_SERVER_HOST", "[]")) if h]

LINUX_SERVER_PROVIDER_KEYS = [k for k in json.loads(os.getenv("LINUX_SERVER_PROVIDER_KEY", "[]")) if k]
LINUX_SERVER_PROVIDER_KEYS_MARKED = set()
LINUX_SERVER_PROVIDER_KEYS_ATTEMPTS = {}

LINUX_SERVER_ERRORS = set(map(int, os.getenv("LINUX_SERVER_ERROR", "").split(",")))

AI_TYPES = {f"AI_TYPE_{i}": os.getenv(f"AI_TYPE_{i}") for i in range(1, 10)}

RESPONSES = {f"RESPONSE_{i}": os.getenv(f"RESPONSE_{i}") for i in range(1, 11)}

MODEL_MAPPING = json.loads(os.getenv("MODEL_MAPPING", "{}"))
MODEL_CONFIG = json.loads(os.getenv("MODEL_CONFIG", "{}"))
MODEL_CHOICES = list(MODEL_MAPPING.values())

DEFAULT_CONFIG = json.loads(os.getenv("DEFAULT_CONFIG", "{}"))
DEFAULT_MODEL_KEY = list(MODEL_MAPPING.keys())[0] if MODEL_MAPPING else None

META_TAGS = os.getenv("META_TAGS")

ALLOWED_EXTENSIONS = json.loads(os.getenv("ALLOWED_EXTENSIONS", "[]"))

class SessionWithID(requests.Session):
    def __init__(sess):
        super().__init__()
        sess.session_id = str(uuid.uuid4())
        sess.stop_event = asyncio.Event()
        sess.cancel_token = {"cancelled": False}

def create_session():
    return SessionWithID()

def ensure_stop_event(sess):
    if not hasattr(sess, "stop_event"):
        sess.stop_event = asyncio.Event()
    if not hasattr(sess, "cancel_token"):
        sess.cancel_token = {"cancelled": False}

def marked_item(item, marked, attempts):
    marked.add(item)
    attempts[item] = attempts.get(item, 0) + 1
    if attempts[item] >= 3:
        def remove():
            marked.discard(item)
            attempts.pop(item, None)
        threading.Timer(300, remove).start()

def get_model_key(display):
    return next((k for k, v in MODEL_MAPPING.items() if v == display), DEFAULT_MODEL_KEY)

def extract_pdf_content(fp):
    content = ""
    try:
        with pdfplumber.open(fp) as pdf:
            for page in pdf.pages:
                text = page.extract_text() or ""
                content += text + "\n"
                if page.images:
                    img_obj = page.to_image(resolution=300)
                    for img in page.images:
                        bbox = (img["x0"], img["top"], img["x1"], img["bottom"])
                        cropped = img_obj.original.crop(bbox)
                        ocr_text = pytesseract.image_to_string(cropped)
                        if ocr_text.strip():
                            content += ocr_text + "\n"
                tables = page.extract_tables()
                for table in tables:
                    for row in table:
                        cells = [str(cell) for cell in row if cell is not None]
                        if cells:
                            content += "\t".join(cells) + "\n"
    except Exception as e:
        content += f"{fp}: {e}"
    return content.strip()

def extract_docx_content(fp):
    content = ""
    try:
        doc = docx.Document(fp)
        for para in doc.paragraphs:
            content += para.text + "\n"
        for table in doc.tables:
            for row in table.rows:
                cells = [cell.text for cell in row.cells]
                content += "\t".join(cells) + "\n"
        with zipfile.ZipFile(fp) as z:
            for file in z.namelist():
                if file.startswith("word/media/"):
                    data = z.read(file)
                    try:
                        img = Image.open(io.BytesIO(data))
                        ocr_text = pytesseract.image_to_string(img)
                        if ocr_text.strip():
                            content += ocr_text + "\n"
                    except:
                        pass
    except Exception as e:
        content += f"{fp}: {e}"
    return content.strip()

def extract_excel_content(fp):
    content = ""
    try:
        sheets = pd.read_excel(fp, sheet_name=None)
        for name, df in sheets.items():
            content += f"Sheet: {name}\n"
            content += df.to_csv(index=False) + "\n"
        wb = load_workbook(fp, data_only=True)
        if wb._images:
            for image in wb._images:
                img = image.ref
                if isinstance(img, bytes):
                    try:
                        pil_img = Image.open(io.BytesIO(img))
                        ocr_text = pytesseract.image_to_string(pil_img)
                        if ocr_text.strip():
                            content += ocr_text + "\n"
                    except:
                        pass
    except Exception as e:
        content += f"{fp}: {e}"
    return content.strip()

def extract_pptx_content(fp):
    content = ""
    try:
        prs = Presentation(fp)
        for slide in prs.slides:
            for shape in slide.shapes:
                if hasattr(shape, "text") and shape.text:
                    content += shape.text + "\n"
                if shape.shape_type == 13 and hasattr(shape, "image") and shape.image:
                    try:
                        img = Image.open(io.BytesIO(shape.image.blob))
                        ocr_text = pytesseract.image_to_string(img)
                        if ocr_text.strip():
                            content += ocr_text + "\n"
                    except:
                        pass
            for shape in slide.shapes:
                if shape.has_table:
                    table = shape.table
                    for row in table.rows:
                        cells = [cell.text for cell in row.cells]
                        content += "\t".join(cells) + "\n"
    except Exception as e:
        content += f"{fp}: {e}"
    return content.strip()

def extract_file_content(fp):
    ext = Path(fp).suffix.lower()
    if ext == ".pdf":
        return extract_pdf_content(fp)
    elif ext in [".doc", ".docx"]:
        return extract_docx_content(fp)
    elif ext in [".xlsx", ".xls"]:
        return extract_excel_content(fp)
    elif ext in [".ppt", ".pptx"]:
        return extract_pptx_content(fp)
    else:
        try:
            return Path(fp).read_text(encoding="utf-8").strip()
        except Exception as e:
            return f"{fp}: {e}"

async def fetch_response_stream_async(host, key, model, msgs, cfg, sid, stop_event, cancel_token):
    for t in [5, 10]:
        try:
            async with httpx.AsyncClient(timeout=t) as client:
                async with client.stream("POST", host, json={**{"model": model, "messages": msgs, "session_id": sid, "stream": True}, **cfg}, headers={"Authorization": f"Bearer {key}"}) as response:
                    if response.status_code in LINUX_SERVER_ERRORS:
                        marked_item(key, LINUX_SERVER_PROVIDER_KEYS_MARKED, LINUX_SERVER_PROVIDER_KEYS_ATTEMPTS)
                        return
                    async for line in response.aiter_lines():
                        if stop_event.is_set() or cancel_token["cancelled"]:
                            return
                        if not line:
                            continue
                        if line.startswith("data: "):
                            data = line[6:]
                            if data.strip() == RESPONSES["RESPONSE_10"]:
                                return
                            try:
                                j = json.loads(data)
                                if isinstance(j, dict) and j.get("choices"):
                                    for ch in j["choices"]:
                                        delta = ch.get("delta", {})
                                        if "reasoning" in delta and delta["reasoning"]:
                                            decoded = delta["reasoning"].encode('utf-8').decode('unicode_escape')
                                            yield ("reasoning", decoded)
                                        if "content" in delta and delta["content"]:
                                            yield ("content", delta["content"])
                            except:
                                continue
        except:
            continue
        marked_item(key, LINUX_SERVER_PROVIDER_KEYS_MARKED, LINUX_SERVER_PROVIDER_KEYS_ATTEMPTS)
    return

async def chat_with_model_async(history, user_input, model_display, sess, custom_prompt, deep_search):
    ensure_stop_event(sess)
    sess.stop_event.clear()
    sess.cancel_token["cancelled"] = False
    if not LINUX_SERVER_PROVIDER_KEYS or not LINUX_SERVER_HOSTS:
        yield ("content", RESPONSES["RESPONSE_3"])
        return
    if not hasattr(sess, "session_id") or not sess.session_id:
        sess.session_id = str(uuid.uuid4())
    model_key = get_model_key(model_display)
    cfg = MODEL_CONFIG.get(model_key, DEFAULT_CONFIG)
    msgs = []
    if deep_search and model_display == MODEL_CHOICES[0]:
        msgs.append({"role": "system", "content": DEEP_SEARCH_INSTRUCTIONS})
        try:
            async with httpx.AsyncClient() as client:
                payload = {
                    "query": user_input,
                    "topic": "general",
                    "search_depth": "basic",
                    "chunks_per_source": 5,
                    "max_results": 5,
                    "time_range": None,
                    "days": 7,
                    "include_answer": True,
                    "include_raw_content": False,
                    "include_images": False,
                    "include_image_descriptions": False,
                    "include_domains": [],
                    "exclude_domains": []
                }
                r = await client.post(DEEP_SEARCH_PROVIDER_HOST, headers={"Authorization": f"Bearer {DEEP_SEARCH_PROVIDER_KEY}"}, json=payload)
                sr_json = r.json()
                msgs.append({"role": "system", "content": json.dumps(sr_json)})
        except:
            pass
        msgs.append({"role": "system", "content": INTERNAL_AI_INSTRUCTIONS})
    elif model_display == MODEL_CHOICES[0]:
        msgs.append({"role": "system", "content": INTERNAL_AI_INSTRUCTIONS})
    else:
        msgs.append({"role": "system", "content": custom_prompt or SYSTEM_PROMPT_MAPPING.get(model_key, SYSTEM_PROMPT_DEFAULT)})
    msgs.extend([{"role": "user", "content": u} for u, _ in history] + [{"role": "assistant", "content": a} for _, a in history if a])
    msgs.append({"role": "user", "content": user_input})
    candidates = [(h, k) for h in LINUX_SERVER_HOSTS for k in LINUX_SERVER_PROVIDER_KEYS]
    random.shuffle(candidates)
    for h, k in candidates:
        stream_gen = fetch_response_stream_async(h, k, model_key, msgs, cfg, sess.session_id, sess.stop_event, sess.cancel_token)
        got_responses = False
        async for chunk in stream_gen:
            if sess.stop_event.is_set() or sess.cancel_token["cancelled"]:
                return
            got_responses = True
            yield chunk
        if got_responses:
            return
    yield ("content", RESPONSES["RESPONSE_2"])

async def respond_async(multi, history, model_display, sess, custom_prompt, deep_search):
    ensure_stop_event(sess)
    sess.stop_event.clear()
    sess.cancel_token["cancelled"] = False
    msg_input = {"text": multi.get("text", "").strip(), "files": multi.get("files", [])}
    if not msg_input["text"] and not msg_input["files"]:
        yield history, gr.update(value="", interactive=True, submit_btn=True, stop_btn=False), sess
        return
    inp = ""
    for f in msg_input["files"]:
        fp = f.get("data", f.get("name", "")) if isinstance(f, dict) else f
        inp += f"{Path(fp).name}\n\n{extract_file_content(fp)}\n\n"
    if msg_input["text"]:
        inp += msg_input["text"]
    history.append([inp, RESPONSES["RESPONSE_8"]])
    yield history, gr.update(interactive=False, submit_btn=False, stop_btn=True), sess
    queue = asyncio.Queue()
    async def background():
        reasoning = ""
        responses = ""
        content_started = False
        ignore_reasoning = False
        async for typ, chunk in chat_with_model_async(history, inp, model_display, sess, custom_prompt, deep_search):
            if sess.stop_event.is_set() or sess.cancel_token["cancelled"]:
                break
            if typ == "reasoning":
                if ignore_reasoning:
                    continue
                reasoning += chunk
                await queue.put(("reasoning", reasoning))
            elif typ == "content":
                if not content_started:
                    content_started = True
                    ignore_reasoning = True
                    responses = chunk
                    await queue.put(("reasoning", ""))
                    await queue.put(("replace", responses))
                else:
                    responses += chunk
                    await queue.put(("append", responses))
        await queue.put(None)
        return responses
    bg_task = asyncio.create_task(background())
    stop_task = asyncio.create_task(sess.stop_event.wait())
    try:
        while True:
            done, _ = await asyncio.wait({stop_task, asyncio.create_task(queue.get())}, return_when=asyncio.FIRST_COMPLETED)
            if stop_task in done:
                sess.cancel_token["cancelled"] = True
                bg_task.cancel()
                history[-1][1] = RESPONSES["RESPONSE_1"]
                yield history, gr.update(value="", interactive=True, submit_btn=True, stop_btn=False), sess
                return
            for d in done:
                result = d.result()
                if result is None:
                    raise StopAsyncIteration
                action, text = result
                history[-1][1] = text
                yield history, gr.update(interactive=False, submit_btn=False, stop_btn=True), sess
    except StopAsyncIteration:
        pass
    finally:
        stop_task.cancel()
    full_response = await bg_task
    yield history, gr.update(value="", interactive=True, submit_btn=True, stop_btn=False), sess

def change_model(new):
    visible = new == MODEL_CHOICES[0]
    default = SYSTEM_PROMPT_MAPPING.get(get_model_key(new), SYSTEM_PROMPT_DEFAULT)
    return [], create_session(), new, default, False, gr.update(visible=visible)

def stop_response(history, sess):
    ensure_stop_event(sess)
    sess.stop_event.set()
    sess.cancel_token["cancelled"] = True
    if history:
        history[-1][1] = RESPONSES["RESPONSE_1"]
    return history, None, create_session()

with gr.Blocks(fill_height=True, fill_width=True, title=AI_TYPES["AI_TYPE_4"], head=META_TAGS) as jarvis:
    user_history = gr.State([])
    user_session = gr.State(create_session())
    selected_model = gr.State(MODEL_CHOICES[0] if MODEL_CHOICES else "")
    J_A_R_V_I_S = gr.State("")
    chatbot = gr.Chatbot(label=AI_TYPES["AI_TYPE_1"], show_copy_button=True, scale=1, elem_id=AI_TYPES["AI_TYPE_2"], examples=JARVIS_INIT)
    deep_search = gr.Checkbox(label=AI_TYPES["AI_TYPE_8"], value=False, info=AI_TYPES["AI_TYPE_9"], visible=True)
    msg = gr.MultimodalTextbox(show_label=False, placeholder=RESPONSES["RESPONSE_5"], interactive=True, file_count="single", file_types=ALLOWED_EXTENSIONS)
    with gr.Sidebar(open=False):
        model_radio = gr.Radio(show_label=False, choices=MODEL_CHOICES, value=MODEL_CHOICES[0])
    model_radio.change(fn=change_model, inputs=[model_radio], outputs=[user_history, user_session, selected_model, J_A_R_V_I_S, deep_search, deep_search])
    def on_example_select(evt: gr.SelectData):
        return evt.value
    chatbot.example_select(fn=on_example_select, inputs=[], outputs=[msg]).then(fn=respond_async, inputs=[msg, user_history, selected_model, user_session, J_A_R_V_I_S, deep_search], outputs=[chatbot, msg, user_session])
    def clear_chat(history, sess, prompt, model):
        return [], create_session(), prompt, model, []
    deep_search.change(fn=clear_chat, inputs=[user_history, user_session, J_A_R_V_I_S, selected_model], outputs=[chatbot, user_session, J_A_R_V_I_S, selected_model, user_history])
    chatbot.clear(fn=clear_chat, inputs=[user_history, user_session, J_A_R_V_I_S, selected_model], outputs=[chatbot, user_session, J_A_R_V_I_S, selected_model, user_history])
    msg.submit(fn=respond_async, inputs=[msg, user_history, selected_model, user_session, J_A_R_V_I_S, deep_search], outputs=[chatbot, msg, user_session], api_name=INTERNAL_AI_GET_SERVER)
    msg.stop(fn=stop_response, inputs=[user_history, user_session], outputs=[chatbot, msg, user_session])
jarvis.queue(default_concurrency_limit=2).launch(max_file_size="1mb")