File size: 17,608 Bytes
29232b4 446e6d6 0d55539 29232b4 cdd78b7 452f16b cdd78b7 5456854 cdd78b7 5456854 60f9e8e cdd78b7 1ae1905 cdd78b7 fee4a44 92220a2 60f9e8e cdd78b7 af424b9 fee4a44 af424b9 5456854 c27c217 5e49ce6 991dd3b 5e49ce6 e678e22 3ef53bc 1ae1905 3ef53bc 1ae1905 5456854 3ef53bc 23e5505 2aa87a7 be88a2b 5456854 3ef53bc be88a2b 5456854 3ef53bc 5456854 cdd78b7 4901fb7 3ef53bc 18663e1 3ef53bc 18663e1 e864bae 3ef53bc 9209ef8 e864bae 9209ef8 1ae1905 3ef53bc 1ae1905 7bae676 3ef53bc 5456854 3ef53bc 5456854 fee4a44 2ca3c02 fee4a44 af424b9 fee4a44 2ca3c02 fee4a44 af424b9 fee4a44 2ca3c02 fee4a44 2ca3c02 fee4a44 5456854 e864bae 22ad1c6 4943e2d 3ef53bc be88a2b a4cdda6 be88a2b e864bae 96bc1c0 be88a2b 5990eed e864bae 5990eed be88a2b 3ef53bc 4943e2d be88a2b e0729bd 5e49ce6 18663e1 5b745df e864bae 33cd3e2 5990eed be88a2b 4f6f363 f4fd6dc 3ef53bc 5e49ce6 2aa87a7 5e49ce6 3ef53bc e864bae 96bc1c0 e864bae be88a2b e864bae 5456854 5e49ce6 18663e1 9209ef8 e864bae 9209ef8 18663e1 62027e8 3ef53bc 9209ef8 18663e1 933e48c 9209ef8 18663e1 be88a2b 9a014e8 5990eed 9a014e8 5e49ce6 e864bae 6aae148 5990eed 9a014e8 c9018ef 9a014e8 c9018ef 5990eed 9a014e8 5990eed 9a014e8 be88a2b 9a014e8 be88a2b b8dd135 be88a2b e864bae be88a2b 5990eed be88a2b 5990eed be88a2b 18663e1 5456854 3ef53bc 5e49ce6 3ef53bc 5e49ce6 5456854 9209ef8 18663e1 9209ef8 e864bae 9209ef8 e864bae 9209ef8 eb0a349 5456854 e29b7bd cdd78b7 bb792fe c27c217 2aa87a7 9209ef8 bb792fe 5e49ce6 c27c217 5e49ce6 9209ef8 cf21eef |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 |
#
# SPDX-FileCopyrightText: Hadad <[email protected]>
# SPDX-License-Identifier: Apache-2.0
#
import asyncio
import codecs
import docx
import gradio as gr
import httpx
import json
import os
import pandas as pd
import pdfplumber
import pytesseract
import random
import requests
import threading
import uuid
import zipfile
import io
from PIL import Image
from pathlib import Path
from pptx import Presentation
from openpyxl import load_workbook
os.system("apt-get update -q -y && apt-get install -q -y tesseract-ocr tesseract-ocr-eng tesseract-ocr-ind libleptonica-dev libtesseract-dev")
JARVIS_INIT = json.loads(os.getenv("HELLO", "[]"))
DEEP_SEARCH_PROVIDER_HOST = os.getenv("DEEP_SEARCH_PROVIDER_HOST")
DEEP_SEARCH_PROVIDER_KEY = os.getenv('DEEP_SEARCH_PROVIDER_KEY')
DEEP_SEARCH_INSTRUCTIONS = os.getenv("DEEP_SEARCH_INSTRUCTIONS")
INTERNAL_AI_GET_SERVER = os.getenv("INTERNAL_AI_GET_SERVER")
INTERNAL_AI_INSTRUCTIONS = os.getenv("INTERNAL_TRAINING_DATA")
SYSTEM_PROMPT_MAPPING = json.loads(os.getenv("SYSTEM_PROMPT_MAPPING", "{}"))
SYSTEM_PROMPT_DEFAULT = os.getenv("DEFAULT_SYSTEM")
LINUX_SERVER_HOSTS = [h for h in json.loads(os.getenv("LINUX_SERVER_HOST", "[]")) if h]
LINUX_SERVER_PROVIDER_KEYS = [k for k in json.loads(os.getenv("LINUX_SERVER_PROVIDER_KEY", "[]")) if k]
LINUX_SERVER_PROVIDER_KEYS_MARKED = set()
LINUX_SERVER_PROVIDER_KEYS_ATTEMPTS = {}
LINUX_SERVER_ERRORS = set(map(int, os.getenv("LINUX_SERVER_ERROR", "").split(",")))
AI_TYPES = {f"AI_TYPE_{i}": os.getenv(f"AI_TYPE_{i}") for i in range(1, 10)}
RESPONSES = {f"RESPONSE_{i}": os.getenv(f"RESPONSE_{i}") for i in range(1, 11)}
MODEL_MAPPING = json.loads(os.getenv("MODEL_MAPPING", "{}"))
MODEL_CONFIG = json.loads(os.getenv("MODEL_CONFIG", "{}"))
MODEL_CHOICES = list(MODEL_MAPPING.values())
DEFAULT_CONFIG = json.loads(os.getenv("DEFAULT_CONFIG", "{}"))
DEFAULT_MODEL_KEY = list(MODEL_MAPPING.keys())[0] if MODEL_MAPPING else None
META_TAGS = os.getenv("META_TAGS")
ALLOWED_EXTENSIONS = json.loads(os.getenv("ALLOWED_EXTENSIONS", "[]"))
class SessionWithID(requests.Session):
def __init__(sess):
super().__init__()
sess.session_id = str(uuid.uuid4())
sess.stop_event = asyncio.Event()
sess.cancel_token = {"cancelled": False}
def create_session():
return SessionWithID()
def ensure_stop_event(sess):
if not hasattr(sess, "stop_event"):
sess.stop_event = asyncio.Event()
if not hasattr(sess, "cancel_token"):
sess.cancel_token = {"cancelled": False}
def marked_item(item, marked, attempts):
marked.add(item)
attempts[item] = attempts.get(item, 0) + 1
if attempts[item] >= 3:
def remove():
marked.discard(item)
attempts.pop(item, None)
threading.Timer(300, remove).start()
def get_model_key(display):
return next((k for k, v in MODEL_MAPPING.items() if v == display), DEFAULT_MODEL_KEY)
def extract_pdf_content(fp):
content = ""
try:
with pdfplumber.open(fp) as pdf:
for page in pdf.pages:
text = page.extract_text() or ""
content += text + "\n"
if page.images:
img_obj = page.to_image(resolution=300)
for img in page.images:
bbox = (img["x0"], img["top"], img["x1"], img["bottom"])
cropped = img_obj.original.crop(bbox)
ocr_text = pytesseract.image_to_string(cropped)
if ocr_text.strip():
content += ocr_text + "\n"
tables = page.extract_tables()
for table in tables:
for row in table:
cells = [str(cell) for cell in row if cell is not None]
if cells:
content += "\t".join(cells) + "\n"
except Exception as e:
content += f"{fp}: {e}"
return content.strip()
def extract_docx_content(fp):
content = ""
try:
doc = docx.Document(fp)
for para in doc.paragraphs:
content += para.text + "\n"
for table in doc.tables:
for row in table.rows:
cells = [cell.text for cell in row.cells]
content += "\t".join(cells) + "\n"
with zipfile.ZipFile(fp) as z:
for file in z.namelist():
if file.startswith("word/media/"):
data = z.read(file)
try:
img = Image.open(io.BytesIO(data))
ocr_text = pytesseract.image_to_string(img)
if ocr_text.strip():
content += ocr_text + "\n"
except:
pass
except Exception as e:
content += f"{fp}: {e}"
return content.strip()
def extract_excel_content(fp):
content = ""
try:
sheets = pd.read_excel(fp, sheet_name=None)
for name, df in sheets.items():
content += f"Sheet: {name}\n"
content += df.to_csv(index=False) + "\n"
wb = load_workbook(fp, data_only=True)
if wb._images:
for image in wb._images:
img = image.ref
if isinstance(img, bytes):
try:
pil_img = Image.open(io.BytesIO(img))
ocr_text = pytesseract.image_to_string(pil_img)
if ocr_text.strip():
content += ocr_text + "\n"
except:
pass
except Exception as e:
content += f"{fp}: {e}"
return content.strip()
def extract_pptx_content(fp):
content = ""
try:
prs = Presentation(fp)
for slide in prs.slides:
for shape in slide.shapes:
if hasattr(shape, "text") and shape.text:
content += shape.text + "\n"
if shape.shape_type == 13 and hasattr(shape, "image") and shape.image:
try:
img = Image.open(io.BytesIO(shape.image.blob))
ocr_text = pytesseract.image_to_string(img)
if ocr_text.strip():
content += ocr_text + "\n"
except:
pass
for shape in slide.shapes:
if shape.has_table:
table = shape.table
for row in table.rows:
cells = [cell.text for cell in row.cells]
content += "\t".join(cells) + "\n"
except Exception as e:
content += f"{fp}: {e}"
return content.strip()
def extract_file_content(fp):
ext = Path(fp).suffix.lower()
if ext == ".pdf":
return extract_pdf_content(fp)
elif ext in [".doc", ".docx"]:
return extract_docx_content(fp)
elif ext in [".xlsx", ".xls"]:
return extract_excel_content(fp)
elif ext in [".ppt", ".pptx"]:
return extract_pptx_content(fp)
else:
try:
return Path(fp).read_text(encoding="utf-8").strip()
except Exception as e:
return f"{fp}: {e}"
async def fetch_response_stream_async(host, key, model, msgs, cfg, sid, stop_event, cancel_token):
for t in [5, 10]:
try:
async with httpx.AsyncClient(timeout=t) as client:
async with client.stream("POST", host, json={**{"model": model, "messages": msgs, "session_id": sid, "stream": True}, **cfg}, headers={"Authorization": f"Bearer {key}"}) as response:
if response.status_code in LINUX_SERVER_ERRORS:
marked_item(key, LINUX_SERVER_PROVIDER_KEYS_MARKED, LINUX_SERVER_PROVIDER_KEYS_ATTEMPTS)
return
async for line in response.aiter_lines():
if stop_event.is_set() or cancel_token["cancelled"]:
return
if not line:
continue
if line.startswith("data: "):
data = line[6:]
if data.strip() == RESPONSES["RESPONSE_10"]:
return
try:
j = json.loads(data)
if isinstance(j, dict) and j.get("choices"):
for ch in j["choices"]:
delta = ch.get("delta", {})
if "reasoning" in delta and delta["reasoning"]:
decoded = delta["reasoning"].encode('utf-8').decode('unicode_escape')
yield ("reasoning", decoded)
if "content" in delta and delta["content"]:
yield ("content", delta["content"])
except:
continue
except:
continue
marked_item(key, LINUX_SERVER_PROVIDER_KEYS_MARKED, LINUX_SERVER_PROVIDER_KEYS_ATTEMPTS)
return
async def chat_with_model_async(history, user_input, model_display, sess, custom_prompt, deep_search):
ensure_stop_event(sess)
sess.stop_event.clear()
sess.cancel_token["cancelled"] = False
if not LINUX_SERVER_PROVIDER_KEYS or not LINUX_SERVER_HOSTS:
yield ("content", RESPONSES["RESPONSE_3"])
return
if not hasattr(sess, "session_id") or not sess.session_id:
sess.session_id = str(uuid.uuid4())
model_key = get_model_key(model_display)
cfg = MODEL_CONFIG.get(model_key, DEFAULT_CONFIG)
msgs = []
if deep_search and model_display == MODEL_CHOICES[0]:
msgs.append({"role": "system", "content": DEEP_SEARCH_INSTRUCTIONS})
try:
async with httpx.AsyncClient() as client:
payload = {
"query": user_input,
"topic": "general",
"search_depth": "basic",
"chunks_per_source": 5,
"max_results": 5,
"time_range": None,
"days": 7,
"include_answer": True,
"include_raw_content": False,
"include_images": False,
"include_image_descriptions": False,
"include_domains": [],
"exclude_domains": []
}
r = await client.post(DEEP_SEARCH_PROVIDER_HOST, headers={"Authorization": f"Bearer {DEEP_SEARCH_PROVIDER_KEY}"}, json=payload)
sr_json = r.json()
msgs.append({"role": "system", "content": json.dumps(sr_json)})
except:
pass
msgs.append({"role": "system", "content": INTERNAL_AI_INSTRUCTIONS})
elif model_display == MODEL_CHOICES[0]:
msgs.append({"role": "system", "content": INTERNAL_AI_INSTRUCTIONS})
else:
msgs.append({"role": "system", "content": custom_prompt or SYSTEM_PROMPT_MAPPING.get(model_key, SYSTEM_PROMPT_DEFAULT)})
msgs.extend([{"role": "user", "content": u} for u, _ in history] + [{"role": "assistant", "content": a} for _, a in history if a])
msgs.append({"role": "user", "content": user_input})
candidates = [(h, k) for h in LINUX_SERVER_HOSTS for k in LINUX_SERVER_PROVIDER_KEYS]
random.shuffle(candidates)
for h, k in candidates:
stream_gen = fetch_response_stream_async(h, k, model_key, msgs, cfg, sess.session_id, sess.stop_event, sess.cancel_token)
got_responses = False
async for chunk in stream_gen:
if sess.stop_event.is_set() or sess.cancel_token["cancelled"]:
return
got_responses = True
yield chunk
if got_responses:
return
yield ("content", RESPONSES["RESPONSE_2"])
async def respond_async(multi, history, model_display, sess, custom_prompt, deep_search):
ensure_stop_event(sess)
sess.stop_event.clear()
sess.cancel_token["cancelled"] = False
msg_input = {"text": multi.get("text", "").strip(), "files": multi.get("files", [])}
if not msg_input["text"] and not msg_input["files"]:
yield history, gr.update(value="", interactive=True, submit_btn=True, stop_btn=False), sess
return
inp = ""
for f in msg_input["files"]:
fp = f.get("data", f.get("name", "")) if isinstance(f, dict) else f
inp += f"{Path(fp).name}\n\n{extract_file_content(fp)}\n\n"
if msg_input["text"]:
inp += msg_input["text"]
history.append([inp, RESPONSES["RESPONSE_8"]])
yield history, gr.update(interactive=False, submit_btn=False, stop_btn=True), sess
queue = asyncio.Queue()
async def background():
reasoning = ""
responses = ""
content_started = False
ignore_reasoning = False
async for typ, chunk in chat_with_model_async(history, inp, model_display, sess, custom_prompt, deep_search):
if sess.stop_event.is_set() or sess.cancel_token["cancelled"]:
break
if typ == "reasoning":
if ignore_reasoning:
continue
reasoning += chunk
await queue.put(("reasoning", reasoning))
elif typ == "content":
if not content_started:
content_started = True
ignore_reasoning = True
responses = chunk
await queue.put(("reasoning", ""))
await queue.put(("replace", responses))
else:
responses += chunk
await queue.put(("append", responses))
await queue.put(None)
return responses
bg_task = asyncio.create_task(background())
stop_task = asyncio.create_task(sess.stop_event.wait())
try:
while True:
done, _ = await asyncio.wait({stop_task, asyncio.create_task(queue.get())}, return_when=asyncio.FIRST_COMPLETED)
if stop_task in done:
sess.cancel_token["cancelled"] = True
bg_task.cancel()
history[-1][1] = RESPONSES["RESPONSE_1"]
yield history, gr.update(value="", interactive=True, submit_btn=True, stop_btn=False), sess
return
for d in done:
result = d.result()
if result is None:
raise StopAsyncIteration
action, text = result
history[-1][1] = text
yield history, gr.update(interactive=False, submit_btn=False, stop_btn=True), sess
except StopAsyncIteration:
pass
finally:
stop_task.cancel()
full_response = await bg_task
yield history, gr.update(value="", interactive=True, submit_btn=True, stop_btn=False), sess
def change_model(new):
visible = new == MODEL_CHOICES[0]
default = SYSTEM_PROMPT_MAPPING.get(get_model_key(new), SYSTEM_PROMPT_DEFAULT)
return [], create_session(), new, default, False, gr.update(visible=visible)
def stop_response(history, sess):
ensure_stop_event(sess)
sess.stop_event.set()
sess.cancel_token["cancelled"] = True
if history:
history[-1][1] = RESPONSES["RESPONSE_1"]
return history, None, create_session()
with gr.Blocks(fill_height=True, fill_width=True, title=AI_TYPES["AI_TYPE_4"], head=META_TAGS) as jarvis:
user_history = gr.State([])
user_session = gr.State(create_session())
selected_model = gr.State(MODEL_CHOICES[0] if MODEL_CHOICES else "")
J_A_R_V_I_S = gr.State("")
chatbot = gr.Chatbot(label=AI_TYPES["AI_TYPE_1"], show_copy_button=True, scale=1, elem_id=AI_TYPES["AI_TYPE_2"], examples=JARVIS_INIT)
deep_search = gr.Checkbox(label=AI_TYPES["AI_TYPE_8"], value=False, info=AI_TYPES["AI_TYPE_9"], visible=True)
msg = gr.MultimodalTextbox(show_label=False, placeholder=RESPONSES["RESPONSE_5"], interactive=True, file_count="single", file_types=ALLOWED_EXTENSIONS)
with gr.Sidebar(open=False):
model_radio = gr.Radio(show_label=False, choices=MODEL_CHOICES, value=MODEL_CHOICES[0])
model_radio.change(fn=change_model, inputs=[model_radio], outputs=[user_history, user_session, selected_model, J_A_R_V_I_S, deep_search, deep_search])
def on_example_select(evt: gr.SelectData):
return evt.value
chatbot.example_select(fn=on_example_select, inputs=[], outputs=[msg]).then(fn=respond_async, inputs=[msg, user_history, selected_model, user_session, J_A_R_V_I_S, deep_search], outputs=[chatbot, msg, user_session])
def clear_chat(history, sess, prompt, model):
return [], create_session(), prompt, model, []
deep_search.change(fn=clear_chat, inputs=[user_history, user_session, J_A_R_V_I_S, selected_model], outputs=[chatbot, user_session, J_A_R_V_I_S, selected_model, user_history])
chatbot.clear(fn=clear_chat, inputs=[user_history, user_session, J_A_R_V_I_S, selected_model], outputs=[chatbot, user_session, J_A_R_V_I_S, selected_model, user_history])
msg.submit(fn=respond_async, inputs=[msg, user_history, selected_model, user_session, J_A_R_V_I_S, deep_search], outputs=[chatbot, msg, user_session], api_name=INTERNAL_AI_GET_SERVER)
msg.stop(fn=stop_response, inputs=[user_history, user_session], outputs=[chatbot, msg, user_session])
jarvis.queue(default_concurrency_limit=2).launch(max_file_size="1mb")
|