INSTALLATIONS
pip install gradio_client rich --upgrade
pip install gradio_client rich --upgrade --ignore-installed --break-system-packages
CREATE JARVIS FILE
nano jarvis
JARVIS MAIN SCRIPT
import sys
from gradio_client import Client
from rich.console import Console
from rich.markdown import Markdown
console = Console()
jarvis = Client("hadadrjt/ai")
input = " ".join(sys.argv[1:]) if len(sys.argv) > 1 else "Hi!"
result = jarvis.predict(multi={"text": input}, api_name="/api")
responses = result[0][0][1]
markdown = Markdown(responses)
console.print(markdown)
JARVIS MULTI PLATFORM SCRIPT
import sys
from gradio_client import Client
from rich.console import Console
from rich.markdown import Markdown
console = Console()
jarvis = Client("hadadrjt/ai")
model = "JARVIS: 2.1.2"
jarvis.predict(new=model, api_name="/change_model")
input_text = " ".join(sys.argv[1:]) if len(sys.argv) > 1 else "Hi!"
result = jarvis.predict(multi={"text": input_text}, api_name="/api")
response_text = result[0][0][1]
console.print(Markdown(response_text))
SET PERMISSION
chmod a+x jarvis
RUN JARVIS
./jarvis "Your message here."
LINUX USER's
sudo mv jarvis /bin/ai
ai "Your message here."
AVAILABLE MODELS
Choose one of the model name for the JARVIS multi platform.
1. JARVIS: 2.1.2
2. DeepSeek: V3-0324
3. DeepSeek: R1 (Reasoning)
4. DeepSeek: R1 - Distill Qwen 14B (Reasoning)
5. DeepSeek: R1 - Distill Qwen 32B (Reasoning)
6. DeepSeek: R1 - Distill Llama 70B (Reasoning)
7. Google: Gemma 3 1B-IT
8. Google: Gemma 3 4B-IT
9. Google: Gemma 3 27B-IT
10. Meta: Llama 3.1 8B Instruct
11. Meta: Llama 3.2 3B Instruct
12. Meta: Llama 3.3 70B Instruct
13. Meta: Llama 4 Maverick 17B 128E Instruct
14. Meta: Llama 4 Scout 17B 16E Instruct
15. Qwen: Qwen2.5 VL 3B Instruct
16. Qwen: Qwen2.5 VL 32B Instruct
17. Qwen: Qwen2.5 VL 72B Instruct
18. Agentica: Deepcoder 14B Preview