|
|
|
|
|
|
|
|
|
|
|
import gradio as gr |
|
import requests |
|
import json |
|
import os |
|
import random |
|
import pytesseract |
|
import pdfplumber |
|
import docx |
|
import pandas as pd |
|
import pptx |
|
import fitz |
|
import io |
|
from pathlib import Path |
|
from PIL import Image |
|
from pptx import Presentation |
|
|
|
os.system("apt-get update -q -y && apt-get install -q -y tesseract-ocr tesseract-ocr-eng tesseract-ocr-ind libleptonica-dev libtesseract-dev") |
|
|
|
LINUX_SERVER_HOSTS = [host for host in json.loads(os.getenv("LINUX_SERVER_HOST", "[]")) if host] |
|
LINUX_SERVER_PROVIDER_KEYS = [key for key in json.loads(os.getenv("LINUX_SERVER_PROVIDER_KEY", "[]")) if key] |
|
|
|
AI_TYPES = {f"AI_TYPE_{i}": os.getenv(f"AI_TYPE_{i}") for i in range(1, 7)} |
|
RESPONSES = {f"RESPONSE_{i}": os.getenv(f"RESPONSE_{i}") for i in range(1, 10)} |
|
|
|
MODEL_MAPPING = json.loads(os.getenv("MODEL_MAPPING", "{}")) |
|
MODEL_CONFIG = json.loads(os.getenv("MODEL_CONFIG", "{}")) |
|
MODEL_CHOICES = list(MODEL_MAPPING.values()) |
|
DEFAULT_CONFIG = json.loads(os.getenv("DEFAULT_CONFIG", "{}")) |
|
|
|
META_TAGS = os.getenv("META_TAGS") |
|
|
|
ALLOWED_EXTENSIONS = json.loads(os.getenv("ALLOWED_EXTENSIONS")) |
|
|
|
session = requests.Session() |
|
|
|
def get_model_key(display_name): |
|
return next((k for k, v in MODEL_MAPPING.items() if v == display_name), MODEL_CHOICES[0]) |
|
|
|
def extract_file_content(file_path): |
|
ext = Path(file_path).suffix.lower() |
|
content = "" |
|
try: |
|
if ext == ".pdf": |
|
with pdfplumber.open(file_path) as pdf: |
|
for page in pdf.pages: |
|
text = page.extract_text() |
|
if text: |
|
content += text + "\n" |
|
tables = page.extract_tables() |
|
if tables: |
|
for table in tables: |
|
table_str = "\n".join([", ".join(row) for row in table if row]) |
|
content += "\n" + table_str + "\n" |
|
elif ext in [".doc", ".docx"]: |
|
doc = docx.Document(file_path) |
|
for para in doc.paragraphs: |
|
content += para.text + "\n" |
|
elif ext in [".xlsx", ".xls"]: |
|
df = pd.read_excel(file_path) |
|
content += df.to_csv(index=False) |
|
elif ext in [".ppt", ".pptx"]: |
|
prs = Presentation(file_path) |
|
for slide in prs.slides: |
|
for shape in slide.shapes: |
|
if hasattr(shape, "text") and shape.text: |
|
content += shape.text + "\n" |
|
elif ext in [".png", ".jpg", ".jpeg", ".tiff", ".bmp", ".gif", ".webp"]: |
|
try: |
|
pytesseract.pytesseract.tesseract_cmd = "/usr/bin/tesseract" |
|
image = Image.open(file_path) |
|
text = pytesseract.image_to_string(image) |
|
content += text + "\n" |
|
except Exception as e: |
|
content += f"{e}\n" |
|
else: |
|
content = Path(file_path).read_text(encoding="utf-8") |
|
except Exception as e: |
|
content = f"{file_path}: {e}" |
|
return content.strip() |
|
|
|
def chat_with_model(history, user_input, selected_model_display): |
|
if not LINUX_SERVER_PROVIDER_KEYS or not LINUX_SERVER_HOSTS: |
|
return RESPONSES["RESPONSE_3"] |
|
selected_model = get_model_key(selected_model_display) |
|
model_config = MODEL_CONFIG.get(selected_model, DEFAULT_CONFIG) |
|
messages = [{"role": "user", "content": user} for user, _ in history] |
|
messages += [{"role": "assistant", "content": assistant} for _, assistant in history if assistant] |
|
messages.append({"role": "user", "content": user_input}) |
|
data = {"model": selected_model, "messages": messages, **model_config} |
|
random.shuffle(LINUX_SERVER_PROVIDER_KEYS) |
|
random.shuffle(LINUX_SERVER_HOSTS) |
|
for api_key in LINUX_SERVER_PROVIDER_KEYS[:2]: |
|
for host in LINUX_SERVER_HOSTS[:2]: |
|
try: |
|
response = session.post(host, json=data, headers={"Authorization": f"Bearer {api_key}"}) |
|
if response.status_code < 400: |
|
ai_text = response.json().get("choices", [{}])[0].get("message", {}).get("content", RESPONSES["RESPONSE_2"]) |
|
return ai_text |
|
except requests.exceptions.RequestException: |
|
continue |
|
return RESPONSES["RESPONSE_3"] |
|
|
|
def respond(multi_input, history, selected_model_display): |
|
message = {"text": multi_input.get("text", "").strip(), "files": multi_input.get("files", [])} |
|
if not message["text"] and not message["files"]: |
|
return history, gr.MultimodalTextbox(value=None, interactive=True) |
|
combined_input = "" |
|
for file_item in message["files"]: |
|
if isinstance(file_item, dict) and "name" in file_item: |
|
file_path = file_item["name"] |
|
else: |
|
file_path = file_item |
|
file_content = extract_file_content(file_path) |
|
combined_input += f"{Path(file_path).name}\n\n{file_content}\n\n" |
|
if message["text"]: |
|
combined_input += message["text"] |
|
history.append([combined_input, ""]) |
|
ai_response = chat_with_model(history, combined_input, selected_model_display) |
|
history[-1][1] = ai_response |
|
return history, gr.MultimodalTextbox(value=None, interactive=True) |
|
|
|
def change_model(new_model_display): |
|
return [], new_model_display |
|
|
|
with gr.Blocks(fill_height=True, fill_width=True, title=AI_TYPES["AI_TYPE_4"], head=META_TAGS) as jarvis: |
|
user_history = gr.State([]) |
|
selected_model = gr.State(MODEL_CHOICES[0]) |
|
chatbot = gr.Chatbot(label=AI_TYPES["AI_TYPE_1"], show_copy_button=True, scale=1, elem_id=AI_TYPES["AI_TYPE_2"]) |
|
model_dropdown = gr.Dropdown(show_label=False, choices=MODEL_CHOICES, value=MODEL_CHOICES[0]) |
|
with gr.Row(): |
|
msg = gr.MultimodalTextbox(show_label=False, placeholder=RESPONSES["RESPONSE_5"], interactive=True, file_count="single", file_types=ALLOWED_EXTENSIONS) |
|
|
|
model_dropdown.change(fn=change_model, inputs=[model_dropdown], outputs=[user_history, selected_model]) |
|
msg.submit(fn=respond, inputs=[msg, user_history, selected_model], outputs=[chatbot, msg]) |
|
|
|
jarvis.launch(show_api=False, max_file_size="1mb") |
|
|