File size: 6,186 Bytes
29232b4 446e6d6 29232b4 5456854 60f9e8e af424b9 5456854 7d6f26e 5456854 4901fb7 5456854 4901fb7 5456854 af424b9 60f9e8e af424b9 60f9e8e af424b9 60f9e8e af424b9 60f9e8e af424b9 5456854 7d6f26e 68ce31f 5456854 7d6f26e 68ce31f 7d6f26e 68ce31f 5456854 af424b9 68ce31f af424b9 5456854 eb0a349 5456854 af424b9 1d7bea0 60f9e8e 5456854 af424b9 5456854 eb0a349 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 |
#
# SPDX-FileCopyrightText: Hadad <[email protected]>
# SPDX-License-Identifier: CC-BY-NC-SA-4.0
#
import gradio as gr
import requests
import json
import os
import random
import pytesseract
import pdfplumber
import docx
import pandas as pd
import pptx
import fitz
import io
from pathlib import Path
from PIL import Image
from pptx import Presentation
os.system("apt-get update -q -y && apt-get install -q -y tesseract-ocr tesseract-ocr-eng tesseract-ocr-ind libleptonica-dev libtesseract-dev")
LINUX_SERVER_HOSTS = [host for host in json.loads(os.getenv("LINUX_SERVER_HOST", "[]")) if host]
LINUX_SERVER_PROVIDER_KEYS = [key for key in json.loads(os.getenv("LINUX_SERVER_PROVIDER_KEY", "[]")) if key]
AI_TYPES = {f"AI_TYPE_{i}": os.getenv(f"AI_TYPE_{i}") for i in range(1, 7)}
RESPONSES = {f"RESPONSE_{i}": os.getenv(f"RESPONSE_{i}") for i in range(1, 10)}
MODEL_MAPPING = json.loads(os.getenv("MODEL_MAPPING", "{}"))
MODEL_CONFIG = json.loads(os.getenv("MODEL_CONFIG", "{}"))
MODEL_CHOICES = list(MODEL_MAPPING.values())
DEFAULT_CONFIG = json.loads(os.getenv("DEFAULT_CONFIG", "{}"))
META_TAGS = os.getenv("META_TAGS")
ALLOWED_EXTENSIONS = json.loads(os.getenv("ALLOWED_EXTENSIONS"))
session = requests.Session()
def get_model_key(display_name):
return next((k for k, v in MODEL_MAPPING.items() if v == display_name), MODEL_CHOICES[0])
def extract_file_content(file_path):
ext = Path(file_path).suffix.lower()
content = ""
try:
if ext == ".pdf":
with pdfplumber.open(file_path) as pdf:
for page in pdf.pages:
text = page.extract_text()
if text:
content += text + "\n"
tables = page.extract_tables()
if tables:
for table in tables:
table_str = "\n".join([", ".join(row) for row in table if row])
content += "\n" + table_str + "\n"
elif ext in [".doc", ".docx"]:
doc = docx.Document(file_path)
for para in doc.paragraphs:
content += para.text + "\n"
elif ext in [".xlsx", ".xls"]:
df = pd.read_excel(file_path)
content += df.to_csv(index=False)
elif ext in [".ppt", ".pptx"]:
prs = Presentation(file_path)
for slide in prs.slides:
for shape in slide.shapes:
if hasattr(shape, "text") and shape.text:
content += shape.text + "\n"
elif ext in [".png", ".jpg", ".jpeg", ".tiff", ".bmp", ".gif", ".webp"]:
try:
pytesseract.pytesseract.tesseract_cmd = "/usr/bin/tesseract"
image = Image.open(file_path)
text = pytesseract.image_to_string(image)
content += text + "\n"
except Exception as e:
content += f"{e}\n"
else:
content = Path(file_path).read_text(encoding="utf-8")
except Exception as e:
content = f"{file_path}: {e}"
return content.strip()
def chat_with_model(history, user_input, selected_model_display):
if not LINUX_SERVER_PROVIDER_KEYS or not LINUX_SERVER_HOSTS:
return RESPONSES["RESPONSE_3"]
selected_model = get_model_key(selected_model_display)
model_config = MODEL_CONFIG.get(selected_model, DEFAULT_CONFIG)
messages = [{"role": "user", "content": user} for user, _ in history]
messages += [{"role": "assistant", "content": assistant} for _, assistant in history if assistant]
messages.append({"role": "user", "content": user_input})
data = {"model": selected_model, "messages": messages, **model_config}
random.shuffle(LINUX_SERVER_PROVIDER_KEYS)
random.shuffle(LINUX_SERVER_HOSTS)
for api_key in LINUX_SERVER_PROVIDER_KEYS[:2]:
for host in LINUX_SERVER_HOSTS[:2]:
try:
response = session.post(host, json=data, headers={"Authorization": f"Bearer {api_key}"})
if response.status_code < 400:
ai_text = response.json().get("choices", [{}])[0].get("message", {}).get("content", RESPONSES["RESPONSE_2"])
return ai_text
except requests.exceptions.RequestException:
continue
return RESPONSES["RESPONSE_3"]
def respond(multi_input, history, selected_model_display):
message = {"text": multi_input.get("text", "").strip(), "files": multi_input.get("files", [])}
if not message["text"] and not message["files"]:
return history, gr.MultimodalTextbox(value=None, interactive=True)
combined_input = ""
for file_item in message["files"]:
if isinstance(file_item, dict) and "name" in file_item:
file_path = file_item["name"]
else:
file_path = file_item
file_content = extract_file_content(file_path)
combined_input += f"{Path(file_path).name}\n\n{file_content}\n\n"
if message["text"]:
combined_input += message["text"]
history.append([combined_input, ""])
ai_response = chat_with_model(history, combined_input, selected_model_display)
history[-1][1] = ai_response
return history, gr.MultimodalTextbox(value=None, interactive=True)
def change_model(new_model_display):
return [], new_model_display
with gr.Blocks(fill_height=True, fill_width=True, title=AI_TYPES["AI_TYPE_4"], head=META_TAGS) as jarvis:
user_history = gr.State([])
selected_model = gr.State(MODEL_CHOICES[0])
chatbot = gr.Chatbot(label=AI_TYPES["AI_TYPE_1"], show_copy_button=True, scale=1, elem_id=AI_TYPES["AI_TYPE_2"])
model_dropdown = gr.Dropdown(show_label=False, choices=MODEL_CHOICES, value=MODEL_CHOICES[0])
with gr.Row():
msg = gr.MultimodalTextbox(show_label=False, placeholder=RESPONSES["RESPONSE_5"], interactive=True, file_count="single", file_types=ALLOWED_EXTENSIONS)
model_dropdown.change(fn=change_model, inputs=[model_dropdown], outputs=[user_history, selected_model])
msg.submit(fn=respond, inputs=[msg, user_history, selected_model], outputs=[chatbot, msg])
jarvis.launch(show_api=False, max_file_size="1mb")
|