File size: 6,186 Bytes
29232b4
446e6d6
 
29232b4
 
5456854
 
 
 
 
60f9e8e
 
 
 
 
 
 
 
 
af424b9
 
 
5456854
7d6f26e
 
5456854
4901fb7
5456854
 
 
 
 
 
 
 
 
4901fb7
 
5456854
 
 
 
 
af424b9
 
 
 
 
60f9e8e
 
af424b9
 
 
 
 
 
 
 
 
60f9e8e
af424b9
 
 
60f9e8e
af424b9
 
 
60f9e8e
 
af424b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5456854
 
7d6f26e
68ce31f
5456854
 
 
 
 
 
7d6f26e
 
 
 
 
 
 
 
68ce31f
7d6f26e
 
68ce31f
5456854
af424b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
68ce31f
 
af424b9
5456854
 
 
 
eb0a349
5456854
 
af424b9
 
1d7bea0
 
60f9e8e
5456854
af424b9
5456854
eb0a349
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
#
# SPDX-FileCopyrightText: Hadad <[email protected]>
# SPDX-License-Identifier: CC-BY-NC-SA-4.0
#

import gradio as gr
import requests
import json
import os
import random
import pytesseract
import pdfplumber
import docx
import pandas as pd
import pptx
import fitz
import io
from pathlib import Path
from PIL import Image
from pptx import Presentation

os.system("apt-get update -q -y && apt-get install -q -y tesseract-ocr tesseract-ocr-eng tesseract-ocr-ind libleptonica-dev libtesseract-dev")

LINUX_SERVER_HOSTS = [host for host in json.loads(os.getenv("LINUX_SERVER_HOST", "[]")) if host]
LINUX_SERVER_PROVIDER_KEYS = [key for key in json.loads(os.getenv("LINUX_SERVER_PROVIDER_KEY", "[]")) if key]

AI_TYPES = {f"AI_TYPE_{i}": os.getenv(f"AI_TYPE_{i}") for i in range(1, 7)}
RESPONSES = {f"RESPONSE_{i}": os.getenv(f"RESPONSE_{i}") for i in range(1, 10)}

MODEL_MAPPING = json.loads(os.getenv("MODEL_MAPPING", "{}"))
MODEL_CONFIG = json.loads(os.getenv("MODEL_CONFIG", "{}"))
MODEL_CHOICES = list(MODEL_MAPPING.values())
DEFAULT_CONFIG = json.loads(os.getenv("DEFAULT_CONFIG", "{}"))

META_TAGS = os.getenv("META_TAGS")

ALLOWED_EXTENSIONS = json.loads(os.getenv("ALLOWED_EXTENSIONS"))

session = requests.Session()

def get_model_key(display_name):
    return next((k for k, v in MODEL_MAPPING.items() if v == display_name), MODEL_CHOICES[0])

def extract_file_content(file_path):
    ext = Path(file_path).suffix.lower()
    content = ""
    try:
        if ext == ".pdf":
            with pdfplumber.open(file_path) as pdf:
                for page in pdf.pages:
                    text = page.extract_text()
                    if text:
                        content += text + "\n"
                    tables = page.extract_tables()
                    if tables:
                        for table in tables:
                            table_str = "\n".join([", ".join(row) for row in table if row])
                            content += "\n" + table_str + "\n"
        elif ext in [".doc", ".docx"]:
            doc = docx.Document(file_path)
            for para in doc.paragraphs:
                content += para.text + "\n"
        elif ext in [".xlsx", ".xls"]:
            df = pd.read_excel(file_path)
            content += df.to_csv(index=False)
        elif ext in [".ppt", ".pptx"]:
            prs = Presentation(file_path)
            for slide in prs.slides:
                for shape in slide.shapes:
                    if hasattr(shape, "text") and shape.text:
                        content += shape.text + "\n"
        elif ext in [".png", ".jpg", ".jpeg", ".tiff", ".bmp", ".gif", ".webp"]:
            try:
                pytesseract.pytesseract.tesseract_cmd = "/usr/bin/tesseract"
                image = Image.open(file_path)
                text = pytesseract.image_to_string(image)
                content += text + "\n"
            except Exception as e:
                content += f"{e}\n"
        else:
            content = Path(file_path).read_text(encoding="utf-8")
    except Exception as e:
        content = f"{file_path}: {e}"
    return content.strip()

def chat_with_model(history, user_input, selected_model_display):
    if not LINUX_SERVER_PROVIDER_KEYS or not LINUX_SERVER_HOSTS:
        return RESPONSES["RESPONSE_3"]
    selected_model = get_model_key(selected_model_display)
    model_config = MODEL_CONFIG.get(selected_model, DEFAULT_CONFIG)
    messages = [{"role": "user", "content": user} for user, _ in history]
    messages += [{"role": "assistant", "content": assistant} for _, assistant in history if assistant]
    messages.append({"role": "user", "content": user_input})
    data = {"model": selected_model, "messages": messages, **model_config}
    random.shuffle(LINUX_SERVER_PROVIDER_KEYS)
    random.shuffle(LINUX_SERVER_HOSTS)
    for api_key in LINUX_SERVER_PROVIDER_KEYS[:2]:
        for host in LINUX_SERVER_HOSTS[:2]:
            try:
                response = session.post(host, json=data, headers={"Authorization": f"Bearer {api_key}"})
                if response.status_code < 400:
                    ai_text = response.json().get("choices", [{}])[0].get("message", {}).get("content", RESPONSES["RESPONSE_2"])
                    return ai_text
            except requests.exceptions.RequestException:
                continue
    return RESPONSES["RESPONSE_3"]

def respond(multi_input, history, selected_model_display):
    message = {"text": multi_input.get("text", "").strip(), "files": multi_input.get("files", [])}
    if not message["text"] and not message["files"]:
        return history, gr.MultimodalTextbox(value=None, interactive=True)
    combined_input = ""
    for file_item in message["files"]:
        if isinstance(file_item, dict) and "name" in file_item:
            file_path = file_item["name"]
        else:
            file_path = file_item
        file_content = extract_file_content(file_path)
        combined_input += f"{Path(file_path).name}\n\n{file_content}\n\n"
    if message["text"]:
        combined_input += message["text"]
    history.append([combined_input, ""])
    ai_response = chat_with_model(history, combined_input, selected_model_display)
    history[-1][1] = ai_response
    return history, gr.MultimodalTextbox(value=None, interactive=True)

def change_model(new_model_display):
    return [], new_model_display

with gr.Blocks(fill_height=True, fill_width=True, title=AI_TYPES["AI_TYPE_4"], head=META_TAGS) as jarvis:
    user_history = gr.State([])
    selected_model = gr.State(MODEL_CHOICES[0])
    chatbot = gr.Chatbot(label=AI_TYPES["AI_TYPE_1"], show_copy_button=True, scale=1, elem_id=AI_TYPES["AI_TYPE_2"])
    model_dropdown = gr.Dropdown(show_label=False, choices=MODEL_CHOICES, value=MODEL_CHOICES[0])
    with gr.Row():
        msg = gr.MultimodalTextbox(show_label=False, placeholder=RESPONSES["RESPONSE_5"], interactive=True, file_count="single", file_types=ALLOWED_EXTENSIONS)

    model_dropdown.change(fn=change_model, inputs=[model_dropdown], outputs=[user_history, selected_model])
    msg.submit(fn=respond, inputs=[msg, user_history, selected_model], outputs=[chatbot, msg])

jarvis.launch(show_api=False, max_file_size="1mb")