Spaces:
Sleeping
Sleeping
import streamlit as st | |
import pandas as pd | |
from sentence_transformers import SentenceTransformer | |
model = SentenceTransformer('paraphrase-MiniLM-L6-v2') | |
input_sentence = st.text_input('Movie title', 'Life of Brian') | |
#st.write('The current movie title is', title) | |
#Sentences we want to encode. Example: | |
sentence = ['This framework generates embeddings for each input sentence'] | |
#Sentences are encoded by calling model.encode() | |
embedding = model.encode([input_sentence]) | |
x = st.slider('Select a value') | |
#embedding = model.encode(input_sentence) | |
#st.write(x, 'squared is', x * x, 'embedding', embedding[0][0]) | |
st.write('The embedding of "', input_sentence, '" at position',x,'is',embedding[0][0]) | |
uploaded_file = st.file_uploader("Choose a file") | |
if uploaded_file is not None: | |
#read csv | |
df1=pd.read_csv(uploaded_file) | |