Spaces:
Sleeping
Sleeping
File size: 830 Bytes
d727a16 4b1c6eb d727a16 2430162 00e69cc 2430162 336ea26 2430162 d727a16 581cd9f 00e69cc 336ea26 4b1c6eb 748cfae 4b1c6eb 5b6d5fb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 |
import streamlit as st
import pandas as pd
from sentence_transformers import SentenceTransformer
model = SentenceTransformer('paraphrase-MiniLM-L6-v2')
input_sentence = st.text_input('Movie title', 'Life of Brian')
#st.write('The current movie title is', title)
#Sentences we want to encode. Example:
sentence = ['This framework generates embeddings for each input sentence']
#Sentences are encoded by calling model.encode()
embedding = model.encode([input_sentence])
x = st.slider('Select a value')
#embedding = model.encode(input_sentence)
#st.write(x, 'squared is', x * x, 'embedding', embedding[0][0])
st.write('The embedding of "', input_sentence, '" at position',x,'is',embedding[0][0])
uploaded_file = st.file_uploader("Choose a file")
if uploaded_file is not None:
#read csv
df1=pd.read_csv(uploaded_file)
|