HCK-TWAT / app.py
hackermoon1's picture
Create app.py
e780216 verified
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
import gradio as gr
MODEL_NAME = "manycore-research/SpatialLM-Llama-1B"
# Carrega tokenizer e modelo
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
model = AutoModelForCausalLM.from_pretrained(
MODEL_NAME,
torch_dtype=torch.float16,
device_map="auto" # Usa GPU se disponível
)
model.eval()
# Função de geração
def generate_response(prompt, temperature=0.7, top_p=0.95, max_new_tokens=200):
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
with torch.no_grad():
outputs = model.generate(
**inputs,
do_sample=True,
temperature=temperature,
top_p=top_p,
max_new_tokens=max_new_tokens,
pad_token_id=tokenizer.eos_token_id
)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
return response
# Interface Gradio
interface = gr.Interface(
fn=generate_response,
inputs=[
gr.Textbox(label="Prompt", placeholder="Digite algo como 'Luan invadiu a base da Hegemonia...'"),
gr.Slider(minimum=0.1, maximum=1.5, value=0.7, label="Temperature"),
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, label="Top-p"),
gr.Slider(minimum=10, maximum=512, value=200, label="Max Tokens")
],
outputs=gr.Textbox(label="Resposta do Modelo"),
title="SpatialLM - Llama 1B",
description="Modelo SpatialLM LLaMA 1B rodando com GPU no Hugging Face Spaces. Ideal pra geração de texto contextualizado e linguagem espacial. Use prompts criativos."
)
interface.launch()