import torch from transformers import AutoModelForCausalLM, AutoTokenizer import gradio as gr MODEL_NAME = "manycore-research/SpatialLM-Llama-1B" # Carrega tokenizer e modelo tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME) model = AutoModelForCausalLM.from_pretrained( MODEL_NAME, torch_dtype=torch.float16, device_map="auto" # Usa GPU se disponível ) model.eval() # Função de geração def generate_response(prompt, temperature=0.7, top_p=0.95, max_new_tokens=200): inputs = tokenizer(prompt, return_tensors="pt").to(model.device) with torch.no_grad(): outputs = model.generate( **inputs, do_sample=True, temperature=temperature, top_p=top_p, max_new_tokens=max_new_tokens, pad_token_id=tokenizer.eos_token_id ) response = tokenizer.decode(outputs[0], skip_special_tokens=True) return response # Interface Gradio interface = gr.Interface( fn=generate_response, inputs=[ gr.Textbox(label="Prompt", placeholder="Digite algo como 'Luan invadiu a base da Hegemonia...'"), gr.Slider(minimum=0.1, maximum=1.5, value=0.7, label="Temperature"), gr.Slider(minimum=0.1, maximum=1.0, value=0.95, label="Top-p"), gr.Slider(minimum=10, maximum=512, value=200, label="Max Tokens") ], outputs=gr.Textbox(label="Resposta do Modelo"), title="SpatialLM - Llama 1B", description="Modelo SpatialLM LLaMA 1B rodando com GPU no Hugging Face Spaces. Ideal pra geração de texto contextualizado e linguagem espacial. Use prompts criativos." ) interface.launch()