Spaces:
Sleeping
Sleeping
# app.py | |
import torch | |
import gradio as gr | |
import threading | |
from transformers import ( | |
AutoModelForCausalLM, | |
AutoTokenizer, | |
TrainingArguments, | |
Trainer, | |
DataCollatorForLanguageModeling | |
) | |
from datasets import load_dataset | |
import logging | |
import sys | |
from urllib.parse import urlparse | |
# Configure logging | |
logging.basicConfig(stream=sys.stdout, level=logging.INFO) | |
def parse_hf_dataset_url(url: str): | |
# ... (keep previous URL parsing logic) ... | |
def train(dataset_url: str): | |
try: | |
# ... (keep previous training logic) ... | |
except Exception as e: | |
logging.error(f"Critical error: {str(e)}") | |
return f"β Critical error: {str(e)}" | |
# Gradio interface | |
with gr.Blocks(title="Phi-2 Training") as demo: | |
gr.Markdown("# π Train Phi-2 with HF Hub Data") | |
with gr.Row(): | |
dataset_url = gr.Textbox( | |
label="Dataset URL", | |
value="https://huggingface.co/datasets/mozilla-foundation/common_voice_11_0" | |
) | |
start_btn = gr.Button("Start Training", variant="primary") | |
status_output = gr.Textbox(label="Status", interactive=False) | |
start_btn.click( | |
fn=lambda url: threading.Thread(target=train, args=(url,)).start(), | |
inputs=[dataset_url], | |
outputs=status_output | |
) | |
if __name__ == "__main__": | |
demo.launch( | |
server_name="0.0.0.0", | |
server_port=7860, | |
enable_queue=True, | |
share=False | |
) |