Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,5 +1,7 @@
|
|
|
|
1 |
import torch
|
2 |
import gradio as gr
|
|
|
3 |
from transformers import (
|
4 |
AutoModelForCausalLM,
|
5 |
AutoTokenizer,
|
@@ -15,125 +17,18 @@ from urllib.parse import urlparse
|
|
15 |
# Configure logging
|
16 |
logging.basicConfig(stream=sys.stdout, level=logging.INFO)
|
17 |
|
18 |
-
def parse_hf_dataset_url(url: str)
|
19 |
-
|
20 |
-
parsed = urlparse(url)
|
21 |
-
path_parts = parsed.path.split('/')
|
22 |
-
|
23 |
-
try:
|
24 |
-
# Find 'datasets' in path
|
25 |
-
datasets_idx = path_parts.index('datasets')
|
26 |
-
except ValueError:
|
27 |
-
raise ValueError("Invalid Hugging Face dataset URL")
|
28 |
-
|
29 |
-
dataset_parts = path_parts[datasets_idx+1:]
|
30 |
-
dataset_name = "/".join(dataset_parts[0:2])
|
31 |
-
|
32 |
-
# Try to find config (common pattern for datasets with viewer)
|
33 |
-
try:
|
34 |
-
viewer_idx = dataset_parts.index('viewer')
|
35 |
-
config = dataset_parts[viewer_idx+1] if viewer_idx+1 < len(dataset_parts) else None
|
36 |
-
except ValueError:
|
37 |
-
config = None
|
38 |
-
|
39 |
-
return dataset_name, config
|
40 |
|
41 |
def train(dataset_url: str):
|
42 |
try:
|
43 |
-
#
|
44 |
-
dataset_name, dataset_config = parse_hf_dataset_url(dataset_url)
|
45 |
-
logging.info(f"Loading dataset: {dataset_name} (config: {dataset_config})")
|
46 |
-
|
47 |
-
# Load model and tokenizer
|
48 |
-
model_name = "microsoft/phi-2"
|
49 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
50 |
-
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="cpu", trust_remote_code=True)
|
51 |
-
|
52 |
-
# Add padding token
|
53 |
-
if tokenizer.pad_token is None:
|
54 |
-
tokenizer.pad_token = tokenizer.eos_token
|
55 |
-
|
56 |
-
# Load dataset from Hugging Face Hub
|
57 |
-
dataset = load_dataset(
|
58 |
-
dataset_name,
|
59 |
-
dataset_config,
|
60 |
-
trust_remote_code=True
|
61 |
-
)
|
62 |
-
|
63 |
-
# Handle dataset splits
|
64 |
-
if "train" not in dataset:
|
65 |
-
raise ValueError("Dataset must have a 'train' split")
|
66 |
|
67 |
-
train_dataset = dataset["train"]
|
68 |
-
eval_dataset = dataset.get("validation", None)
|
69 |
-
|
70 |
-
# Split if no validation set
|
71 |
-
if eval_dataset is None:
|
72 |
-
split = train_dataset.train_test_split(test_size=0.1, seed=42)
|
73 |
-
train_dataset = split["train"]
|
74 |
-
eval_dataset = split["test"]
|
75 |
-
|
76 |
-
# Tokenization function
|
77 |
-
def tokenize_function(examples):
|
78 |
-
return tokenizer(
|
79 |
-
examples["text"], # Adjust column name as needed
|
80 |
-
padding="max_length",
|
81 |
-
truncation=True,
|
82 |
-
max_length=256,
|
83 |
-
return_tensors="pt",
|
84 |
-
)
|
85 |
-
|
86 |
-
# Tokenize datasets
|
87 |
-
tokenized_train = train_dataset.map(
|
88 |
-
tokenize_function,
|
89 |
-
batched=True,
|
90 |
-
remove_columns=train_dataset.column_names
|
91 |
-
)
|
92 |
-
tokenized_eval = eval_dataset.map(
|
93 |
-
tokenize_function,
|
94 |
-
batched=True,
|
95 |
-
remove_columns=eval_dataset.column_names
|
96 |
-
)
|
97 |
-
|
98 |
-
# Data collator
|
99 |
-
data_collator = DataCollatorForLanguageModeling(
|
100 |
-
tokenizer=tokenizer,
|
101 |
-
mlm=False
|
102 |
-
)
|
103 |
-
|
104 |
-
# Training arguments
|
105 |
-
training_args = TrainingArguments(
|
106 |
-
output_dir="./phi2-results",
|
107 |
-
per_device_train_batch_size=2,
|
108 |
-
per_device_eval_batch_size=2,
|
109 |
-
num_train_epochs=3,
|
110 |
-
logging_dir="./logs",
|
111 |
-
logging_steps=10,
|
112 |
-
fp16=False,
|
113 |
-
)
|
114 |
-
|
115 |
-
# Trainer
|
116 |
-
trainer = Trainer(
|
117 |
-
model=model,
|
118 |
-
args=training_args,
|
119 |
-
train_dataset=tokenized_train,
|
120 |
-
eval_dataset=tokenized_eval,
|
121 |
-
data_collator=data_collator,
|
122 |
-
)
|
123 |
-
|
124 |
-
# Start training
|
125 |
-
logging.info("Training started...")
|
126 |
-
trainer.train()
|
127 |
-
trainer.save_model("./phi2-trained-model")
|
128 |
-
logging.info("Training completed!")
|
129 |
-
|
130 |
-
return "β
Training succeeded! Model saved."
|
131 |
-
|
132 |
except Exception as e:
|
133 |
-
logging.error(f"
|
134 |
-
return f"β
|
135 |
|
136 |
-
# Gradio
|
137 |
with gr.Blocks(title="Phi-2 Training") as demo:
|
138 |
gr.Markdown("# π Train Phi-2 with HF Hub Data")
|
139 |
|
@@ -147,7 +42,7 @@ with gr.Blocks(title="Phi-2 Training") as demo:
|
|
147 |
status_output = gr.Textbox(label="Status", interactive=False)
|
148 |
|
149 |
start_btn.click(
|
150 |
-
fn=train,
|
151 |
inputs=[dataset_url],
|
152 |
outputs=status_output
|
153 |
)
|
@@ -156,6 +51,6 @@ if __name__ == "__main__":
|
|
156 |
demo.launch(
|
157 |
server_name="0.0.0.0",
|
158 |
server_port=7860,
|
159 |
-
enable_queue=True,
|
160 |
-
share=False
|
161 |
)
|
|
|
1 |
+
# app.py
|
2 |
import torch
|
3 |
import gradio as gr
|
4 |
+
import threading
|
5 |
from transformers import (
|
6 |
AutoModelForCausalLM,
|
7 |
AutoTokenizer,
|
|
|
17 |
# Configure logging
|
18 |
logging.basicConfig(stream=sys.stdout, level=logging.INFO)
|
19 |
|
20 |
+
def parse_hf_dataset_url(url: str):
|
21 |
+
# ... (keep previous URL parsing logic) ...
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
|
23 |
def train(dataset_url: str):
|
24 |
try:
|
25 |
+
# ... (keep previous training logic) ...
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
except Exception as e:
|
28 |
+
logging.error(f"Critical error: {str(e)}")
|
29 |
+
return f"β Critical error: {str(e)}"
|
30 |
|
31 |
+
# Gradio interface
|
32 |
with gr.Blocks(title="Phi-2 Training") as demo:
|
33 |
gr.Markdown("# π Train Phi-2 with HF Hub Data")
|
34 |
|
|
|
42 |
status_output = gr.Textbox(label="Status", interactive=False)
|
43 |
|
44 |
start_btn.click(
|
45 |
+
fn=lambda url: threading.Thread(target=train, args=(url,)).start(),
|
46 |
inputs=[dataset_url],
|
47 |
outputs=status_output
|
48 |
)
|
|
|
51 |
demo.launch(
|
52 |
server_name="0.0.0.0",
|
53 |
server_port=7860,
|
54 |
+
enable_queue=True,
|
55 |
+
share=False
|
56 |
)
|