Spaces:
Sleeping
Sleeping
import torch | |
from transformers import ( | |
AutoModelForCausalLM, | |
AutoTokenizer, | |
TrainingArguments, | |
Trainer, | |
DataCollatorForLanguageModeling | |
) | |
from datasets import load_dataset | |
import os | |
def train(): | |
# Load model and tokenizer | |
model_name = "microsoft/phi-2" | |
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) | |
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="cpu", trust_remote_code=True) | |
# Add padding token if missing | |
if tokenizer.pad_token is None: | |
tokenizer.pad_token = tokenizer.eos_token | |
# Load dataset (update paths as needed) | |
dataset = load_dataset( | |
"csv", | |
data_files={ | |
"train": "eswardivi/medical_qa", | |
"validation": "eswardivi/medical_qa" | |
} | |
) | |
# Tokenization function | |
def tokenize_function(examples): | |
return tokenizer( | |
examples["text"], | |
padding="max_length", | |
truncation=True, | |
max_length=256, | |
return_tensors="pt", | |
) | |
# Preprocess dataset | |
tokenized_dataset = dataset.map( | |
tokenize_function, | |
batched=True, | |
remove_columns=["text"] | |
) | |
# Data collator | |
data_collator = DataCollatorForLanguageModeling( | |
tokenizer=tokenizer, | |
mlm=False | |
) | |
# Training arguments | |
training_args = TrainingArguments( | |
output_dir="./phi2-cpu-results", | |
overwrite_output_dir=True, | |
per_device_train_batch_size=2, | |
per_device_eval_batch_size=2, | |
num_train_epochs=3, | |
logging_dir="./logs", | |
logging_steps=100, | |
evaluation_strategy="epoch", | |
save_strategy="epoch", | |
fp16=False, | |
report_to="none", | |
) | |
# Initialize Trainer | |
trainer = Trainer( | |
model=model, | |
args=training_args, | |
train_dataset=tokenized_dataset["train"], | |
eval_dataset=tokenized_dataset["validation"], | |
data_collator=data_collator, | |
) | |
# Start training | |
print("Starting training...") | |
trainer.train() | |
# Save model | |
trainer.save_model("./phi2-trained-model") | |
tokenizer.save_pretrained("./phi2-trained-model") | |
print("Training complete! Model saved.") | |
if __name__ == "__main__": | |
train() |