Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,27 +1,88 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import os
|
2 |
-
from autotrain import logger
|
3 |
-
from autotrain.trainers.common import ALLOW_REMOTE_CODE
|
4 |
-
from autotrain.trainers.text_generation import LLMTrainingParams, LLMTrainer
|
5 |
|
6 |
def train():
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
num_train_epochs=3,
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
|
|
|
|
20 |
)
|
21 |
|
22 |
-
# Initialize
|
23 |
-
trainer =
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
trainer.train()
|
25 |
|
|
|
|
|
|
|
|
|
|
|
26 |
if __name__ == "__main__":
|
27 |
train()
|
|
|
1 |
+
import torch
|
2 |
+
from transformers import (
|
3 |
+
AutoModelForCausalLM,
|
4 |
+
AutoTokenizer,
|
5 |
+
TrainingArguments,
|
6 |
+
Trainer,
|
7 |
+
DataCollatorForLanguageModeling
|
8 |
+
)
|
9 |
+
from datasets import load_dataset
|
10 |
import os
|
|
|
|
|
|
|
11 |
|
12 |
def train():
|
13 |
+
# Load model and tokenizer
|
14 |
+
model_name = "microsoft/phi-2"
|
15 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
16 |
+
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="cpu", trust_remote_code=True)
|
17 |
+
|
18 |
+
# Add padding token if missing
|
19 |
+
if tokenizer.pad_token is None:
|
20 |
+
tokenizer.pad_token = tokenizer.eos_token
|
21 |
+
|
22 |
+
# Load dataset (update paths as needed)
|
23 |
+
dataset = load_dataset(
|
24 |
+
"csv",
|
25 |
+
data_files={
|
26 |
+
"train": "eswardivi/medical_qa",
|
27 |
+
"validation": "eswardivi/medical_qa"
|
28 |
+
}
|
29 |
+
)
|
30 |
+
|
31 |
+
# Tokenization function
|
32 |
+
def tokenize_function(examples):
|
33 |
+
return tokenizer(
|
34 |
+
examples["text"],
|
35 |
+
padding="max_length",
|
36 |
+
truncation=True,
|
37 |
+
max_length=256,
|
38 |
+
return_tensors="pt",
|
39 |
+
)
|
40 |
+
|
41 |
+
# Preprocess dataset
|
42 |
+
tokenized_dataset = dataset.map(
|
43 |
+
tokenize_function,
|
44 |
+
batched=True,
|
45 |
+
remove_columns=["text"]
|
46 |
+
)
|
47 |
+
|
48 |
+
# Data collator
|
49 |
+
data_collator = DataCollatorForLanguageModeling(
|
50 |
+
tokenizer=tokenizer,
|
51 |
+
mlm=False
|
52 |
+
)
|
53 |
+
|
54 |
+
# Training arguments
|
55 |
+
training_args = TrainingArguments(
|
56 |
+
output_dir="./phi2-cpu-results",
|
57 |
+
overwrite_output_dir=True,
|
58 |
+
per_device_train_batch_size=2,
|
59 |
+
per_device_eval_batch_size=2,
|
60 |
num_train_epochs=3,
|
61 |
+
logging_dir="./logs",
|
62 |
+
logging_steps=100,
|
63 |
+
evaluation_strategy="epoch",
|
64 |
+
save_strategy="epoch",
|
65 |
+
fp16=False,
|
66 |
+
report_to="none",
|
67 |
)
|
68 |
|
69 |
+
# Initialize Trainer
|
70 |
+
trainer = Trainer(
|
71 |
+
model=model,
|
72 |
+
args=training_args,
|
73 |
+
train_dataset=tokenized_dataset["train"],
|
74 |
+
eval_dataset=tokenized_dataset["validation"],
|
75 |
+
data_collator=data_collator,
|
76 |
+
)
|
77 |
+
|
78 |
+
# Start training
|
79 |
+
print("Starting training...")
|
80 |
trainer.train()
|
81 |
|
82 |
+
# Save model
|
83 |
+
trainer.save_model("./phi2-trained-model")
|
84 |
+
tokenizer.save_pretrained("./phi2-trained-model")
|
85 |
+
print("Training complete! Model saved.")
|
86 |
+
|
87 |
if __name__ == "__main__":
|
88 |
train()
|