File size: 8,105 Bytes
9360743
 
2b46b9d
 
9360743
 
 
2b46b9d
 
 
9360743
2b46b9d
 
9360743
 
 
2b46b9d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9360743
 
2b46b9d
 
 
 
 
9360743
2b46b9d
9360743
 
2b46b9d
9360743
 
2b46b9d
 
 
9360743
 
2b46b9d
 
 
1b371ad
9360743
 
 
7e6fbbc
9360743
 
 
 
2b46b9d
9360743
 
 
 
 
 
 
 
 
 
 
2b46b9d
 
 
 
 
9360743
 
 
 
 
 
2b46b9d
9360743
 
 
 
 
 
 
2b46b9d
 
 
 
 
9360743
 
2b46b9d
9360743
 
 
 
 
 
 
 
 
 
2b46b9d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9360743
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2b46b9d
 
9360743
 
 
 
 
 
 
 
 
 
2b46b9d
9360743
 
 
 
 
 
2b46b9d
 
9360743
 
 
 
2b46b9d
 
 
 
 
 
9360743
 
 
 
 
 
2b46b9d
9360743
 
2b46b9d
9360743
 
 
 
 
 
 
2b46b9d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427

import os
import argparse



import torch
import gradio as gr


import numpy as np
import einops
import traceback

from PIL import Image
from diffusers import AutoencoderKLHunyuanVideo
from transformers import (
    LlamaModel, CLIPTextModel,
    LlamaTokenizerFast, CLIPTokenizer,
    SiglipImageProcessor, SiglipVisionModel
)

from diffusers_helper.hf_login import login
from diffusers_helper.hunyuan import (
    encode_prompt_conds, vae_decode, vae_encode,
    vae_decode_fake
)
from diffusers_helper.utils import (
    save_bcthw_as_mp4, crop_or_pad_yield_mask, soft_append_bcthw,
    resize_and_center_crop, generate_timestamp
)
from diffusers_helper.models.hunyuan_video_packed import HunyuanVideoTransformer3DModelPacked
from diffusers_helper.pipelines.k_diffusion_hunyuan import sample_hunyuan
from diffusers_helper.memory import (
    gpu, get_cuda_free_memory_gb, unload_complete_models, load_model_as_complete,
    DynamicSwapInstaller, move_model_to_device_with_memory_preservation,
    offload_model_from_device_for_memory_preservation, fake_diffusers_current_device
)
from diffusers_helper.clip_vision import hf_clip_vision_encode
from diffusers_helper.thread_utils import AsyncStream, async_run


# --- Args and config ---
parser = argparse.ArgumentParser()
parser.add_argument('--share', action='store_true')
parser.add_argument('--server', type=str, default='0.0.0.0')
parser.add_argument('--port', type=int, required=False)
parser.add_argument('--inbrowser', action='store_true')
args = parser.parse_args()

os.environ['HF_HOME'] = os.path.abspath(
    os.path.realpath(os.path.join(os.path.dirname(__file__), './hf_download'))
)

print(args)

free_mem_gb = get_cuda_free_memory_gb(gpu)
high_vram = free_mem_gb > 60

print(f'Free VRAM {free_mem_gb} GB')
print(f'High-VRAM Mode: {high_vram}')

# --- Load models ---
text_encoder = LlamaModel.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='text_encoder', torch_dtype=torch.float16).cpu()
text_encoder_2 = CLIPTextModel.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='text_encoder_2', torch_dtype=torch.float16).cpu()
tokenizer = LlamaTokenizerFast.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='tokenizer')
tokenizer_2 = CLIPTokenizer.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='tokenizer_2')
vae = AutoencoderKLHunyuanVideo.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='vae', torch_dtype=torch.float16).cpu()

feature_extractor = SiglipImageProcessor.from_pretrained("lllyasviel/flux_redux_bfl", subfolder='feature_extractor')
image_encoder = SiglipVisionModel.from_pretrained("lllyasviel/flux_redux_bfl", subfolder='image_encoder', torch_dtype=torch.float16).cpu()

transformer = HunyuanVideoTransformer3DModelPacked.from_pretrained('lllyasviel/FramePackI2V_HY', torch_dtype=torch.bfloat16).cpu()

vae.eval(), text_encoder.eval(), text_encoder_2.eval(), image_encoder.eval(), transformer.eval()





if not high_vram:
    vae.enable_slicing()
    vae.enable_tiling()

transformer.high_quality_fp32_output_for_inference = True


transformer.to(dtype=torch.bfloat16)
vae.to(dtype=torch.float16)
image_encoder.to(dtype=torch.float16)
text_encoder.to(dtype=torch.float16)
text_encoder_2.to(dtype=torch.float16)

for model in [vae, text_encoder, text_encoder_2, image_encoder, transformer]:
    model.requires_grad_(False)




if not high_vram:

    DynamicSwapInstaller.install_model(transformer, device=gpu)
    DynamicSwapInstaller.install_model(text_encoder, device=gpu)
else:
    transformer.to(gpu)

stream = AsyncStream()

outputs_folder = './outputs/'
os.makedirs(outputs_folder, exist_ok=True)

# --- UI + CSS ---
def make_progress_bar_css():
    return """
    body, .gradio-container {
        background-color: #000000 !important;
        color: #FFFFFF !important;
    }
    .gr-button, .gr-input, .gr-textbox, .gr-slider, .gr-checkbox {
        background-color: #1a1a1a !important;
        color: #ffffff !important;
        border-color: #444 !important;
    }
    .gr-button:hover {
        background-color: #333 !important;
    }
    .gr-markdown {
        color: #ddd !important;
    }
    .gr-image-preview, .gr-video {
        background-color: #111 !important;
    }
    """

def end_process():
    stream.input_queue.push('end')






















































































































































































































def process(input_image, prompt, n_prompt, seed, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache):
    global stream
    assert input_image is not None, 'No input image!'

    yield None, None, '', '', gr.update(interactive=False), gr.update(interactive=True)

    stream = AsyncStream()

    async_run(worker, input_image, prompt, n_prompt, seed, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache)

    output_filename = None

    while True:
        flag, data = stream.output_queue.next()

        if flag == 'file':
            output_filename = data
            yield output_filename, gr.update(), gr.update(), gr.update(), gr.update(interactive=False), gr.update(interactive=True)

        if flag == 'progress':
            preview, desc, html = data
            yield gr.update(), gr.update(visible=True, value=preview), desc, html, gr.update(interactive=False), gr.update(interactive=True)

        if flag == 'end':
            yield output_filename, gr.update(visible=False), gr.update(), '', gr.update(interactive=True), gr.update(interactive=False)
            break






quick_prompts = [
    'The girl dances gracefully, with clear movements, full of charm.',
    'A character doing some simple body movements.',
]
quick_prompts = [[x] for x in quick_prompts]


css = make_progress_bar_css()

block = gr.Blocks(css=css).queue()
with block:
    gr.Markdown('# FramePack')
                end_button = gr.Button(value="End Generation", interactive=False)

            with gr.Group():
                use_teacache = gr.Checkbox(label='Use TeaCache', value=True)
                n_prompt = gr.Textbox(label="Negative Prompt", value="", visible=False)

                seed = gr.Number(label="Seed", value=31337, precision=0)

                total_second_length = gr.Slider(label="Total Video Length (Seconds)", minimum=1, maximum=120, value=5, step=0.1)
                latent_window_size = gr.Slider(label="Latent Window Size", minimum=1, maximum=33, value=9, step=1, visible=False)
                steps = gr.Slider(label="Steps", minimum=1, maximum=100, value=25, step=1)
                cfg = gr.Slider(label="CFG Scale", minimum=1.0, maximum=32.0, value=1.0, step=0.01, visible=False)
                gs = gr.Slider(label="Distilled CFG Scale", minimum=1.0, maximum=32.0, value=10.0, step=0.01)
                rs = gr.Slider(label="CFG Re-Scale", minimum=0.0, maximum=1.0, value=0.0, step=0.01, visible=False)
                gpu_memory_preservation = gr.Slider(label="GPU Inference Preserved Memory (GB)", minimum=6, maximum=128, value=6, step=0.1)



        with gr.Column():
            preview_image = gr.Image(label="Next Latents", height=200, visible=False)
            result_video = gr.Video(label="Finished Frames", autoplay=True, show_share_button=False, height=512, loop=True)
            gr.Markdown('Note: The ending actions are generated before the start. Wait for full video.')
            progress_desc = gr.Markdown('', elem_classes='no-generating-animation')
            progress_bar = gr.HTML('', elem_classes='no-generating-animation')

    ips = [input_image, prompt, n_prompt, seed, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache]
    start_button.click(fn=process, inputs=ips, outputs=[result_video, preview_image, progress_desc, progress_bar, start_button, end_button])
    end_button.click(fn=end_process)


block.launch(
    server_name=args.server,
    server_port=args.port,