Spaces:
Running
on
Zero
Running
on
Zero
Update demo_gradio.py
Browse files- demo_gradio.py +256 -233
demo_gradio.py
CHANGED
@@ -1,42 +1,56 @@
|
|
1 |
-
from diffusers_helper.hf_login import login
|
2 |
|
3 |
import os
|
|
|
|
|
4 |
|
5 |
-
os.environ['HF_HOME'] = os.path.abspath(os.path.realpath(os.path.join(os.path.dirname(__file__), './hf_download')))
|
6 |
|
7 |
-
import gradio as gr
|
8 |
import torch
|
9 |
-
import
|
10 |
-
|
11 |
-
|
12 |
import numpy as np
|
13 |
-
import
|
14 |
-
import
|
15 |
|
16 |
from PIL import Image
|
17 |
from diffusers import AutoencoderKLHunyuanVideo
|
18 |
-
from transformers import
|
19 |
-
|
20 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
from diffusers_helper.models.hunyuan_video_packed import HunyuanVideoTransformer3DModelPacked
|
22 |
from diffusers_helper.pipelines.k_diffusion_hunyuan import sample_hunyuan
|
23 |
-
from diffusers_helper.memory import
|
24 |
-
|
25 |
-
|
26 |
-
|
|
|
27 |
from diffusers_helper.clip_vision import hf_clip_vision_encode
|
28 |
-
from diffusers_helper.
|
29 |
|
30 |
|
|
|
31 |
parser = argparse.ArgumentParser()
|
32 |
parser.add_argument('--share', action='store_true')
|
33 |
-
parser.add_argument(
|
34 |
-
parser.add_argument(
|
35 |
-
parser.add_argument(
|
36 |
args = parser.parse_args()
|
37 |
|
38 |
-
|
39 |
-
|
|
|
40 |
|
41 |
print(args)
|
42 |
|
@@ -46,6 +60,7 @@ high_vram = free_mem_gb > 60
|
|
46 |
print(f'Free VRAM {free_mem_gb} GB')
|
47 |
print(f'High-VRAM Mode: {high_vram}')
|
48 |
|
|
|
49 |
text_encoder = LlamaModel.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='text_encoder', torch_dtype=torch.float16).cpu()
|
50 |
text_encoder_2 = CLIPTextModel.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='text_encoder_2', torch_dtype=torch.float16).cpu()
|
51 |
tokenizer = LlamaTokenizerFast.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='tokenizer')
|
@@ -57,18 +72,18 @@ image_encoder = SiglipVisionModel.from_pretrained("lllyasviel/flux_redux_bfl", s
|
|
57 |
|
58 |
transformer = HunyuanVideoTransformer3DModelPacked.from_pretrained('lllyasviel/FramePackI2V_HY', torch_dtype=torch.bfloat16).cpu()
|
59 |
|
60 |
-
vae.eval()
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
|
66 |
if not high_vram:
|
67 |
vae.enable_slicing()
|
68 |
vae.enable_tiling()
|
69 |
|
70 |
transformer.high_quality_fp32_output_for_inference = True
|
71 |
-
|
72 |
|
73 |
transformer.to(dtype=torch.bfloat16)
|
74 |
vae.to(dtype=torch.float16)
|
@@ -76,21 +91,17 @@ image_encoder.to(dtype=torch.float16)
|
|
76 |
text_encoder.to(dtype=torch.float16)
|
77 |
text_encoder_2.to(dtype=torch.float16)
|
78 |
|
79 |
-
vae
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
|
85 |
if not high_vram:
|
86 |
-
|
87 |
DynamicSwapInstaller.install_model(transformer, device=gpu)
|
88 |
DynamicSwapInstaller.install_model(text_encoder, device=gpu)
|
89 |
else:
|
90 |
-
text_encoder.to(gpu)
|
91 |
-
text_encoder_2.to(gpu)
|
92 |
-
image_encoder.to(gpu)
|
93 |
-
vae.to(gpu)
|
94 |
transformer.to(gpu)
|
95 |
|
96 |
stream = AsyncStream()
|
@@ -98,221 +109,243 @@ stream = AsyncStream()
|
|
98 |
outputs_folder = './outputs/'
|
99 |
os.makedirs(outputs_folder, exist_ok=True)
|
100 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
101 |
|
102 |
-
@torch.no_grad()
|
103 |
-
def worker(input_image, prompt, n_prompt, seed, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache):
|
104 |
-
total_latent_sections = (total_second_length * 30) / (latent_window_size * 4)
|
105 |
-
total_latent_sections = int(max(round(total_latent_sections), 1))
|
106 |
|
107 |
-
job_id = generate_timestamp()
|
108 |
|
109 |
-
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Starting ...'))))
|
110 |
|
111 |
-
try:
|
112 |
-
# Clean GPU
|
113 |
-
if not high_vram:
|
114 |
-
unload_complete_models(
|
115 |
-
text_encoder, text_encoder_2, image_encoder, vae, transformer
|
116 |
-
)
|
117 |
|
118 |
-
# Text encoding
|
119 |
|
120 |
-
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Text encoding ...'))))
|
121 |
|
122 |
-
if not high_vram:
|
123 |
-
fake_diffusers_current_device(text_encoder, gpu) # since we only encode one text - that is one model move and one encode, offload is same time consumption since it is also one load and one encode.
|
124 |
-
load_model_as_complete(text_encoder_2, target_device=gpu)
|
125 |
|
126 |
-
llama_vec, clip_l_pooler = encode_prompt_conds(prompt, text_encoder, text_encoder_2, tokenizer, tokenizer_2)
|
127 |
|
128 |
-
if cfg == 1:
|
129 |
-
llama_vec_n, clip_l_pooler_n = torch.zeros_like(llama_vec), torch.zeros_like(clip_l_pooler)
|
130 |
-
else:
|
131 |
-
llama_vec_n, clip_l_pooler_n = encode_prompt_conds(n_prompt, text_encoder, text_encoder_2, tokenizer, tokenizer_2)
|
132 |
|
133 |
-
llama_vec, llama_attention_mask = crop_or_pad_yield_mask(llama_vec, length=512)
|
134 |
-
llama_vec_n, llama_attention_mask_n = crop_or_pad_yield_mask(llama_vec_n, length=512)
|
135 |
|
136 |
-
# Processing input image
|
137 |
|
138 |
-
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Image processing ...'))))
|
139 |
|
140 |
-
H, W, C = input_image.shape
|
141 |
-
height, width = find_nearest_bucket(H, W, resolution=640)
|
142 |
-
input_image_np = resize_and_center_crop(input_image, target_width=width, target_height=height)
|
143 |
|
144 |
-
Image.fromarray(input_image_np).save(os.path.join(outputs_folder, f'{job_id}.png'))
|
145 |
|
146 |
-
input_image_pt = torch.from_numpy(input_image_np).float() / 127.5 - 1
|
147 |
-
input_image_pt = input_image_pt.permute(2, 0, 1)[None, :, None]
|
148 |
|
149 |
-
# VAE encoding
|
150 |
|
151 |
-
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'VAE encoding ...'))))
|
152 |
|
153 |
-
if not high_vram:
|
154 |
-
load_model_as_complete(vae, target_device=gpu)
|
155 |
|
156 |
-
start_latent = vae_encode(input_image_pt, vae)
|
157 |
|
158 |
-
# CLIP Vision
|
159 |
|
160 |
-
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'CLIP Vision encoding ...'))))
|
161 |
|
162 |
-
if not high_vram:
|
163 |
-
load_model_as_complete(image_encoder, target_device=gpu)
|
164 |
|
165 |
-
image_encoder_output = hf_clip_vision_encode(input_image_np, feature_extractor, image_encoder)
|
166 |
-
image_encoder_last_hidden_state = image_encoder_output.last_hidden_state
|
167 |
|
168 |
-
# Dtype
|
169 |
|
170 |
-
llama_vec = llama_vec.to(transformer.dtype)
|
171 |
-
llama_vec_n = llama_vec_n.to(transformer.dtype)
|
172 |
-
clip_l_pooler = clip_l_pooler.to(transformer.dtype)
|
173 |
-
clip_l_pooler_n = clip_l_pooler_n.to(transformer.dtype)
|
174 |
-
image_encoder_last_hidden_state = image_encoder_last_hidden_state.to(transformer.dtype)
|
175 |
|
176 |
-
# Sampling
|
177 |
|
178 |
-
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Start sampling ...'))))
|
179 |
|
180 |
-
rnd = torch.Generator("cpu").manual_seed(seed)
|
181 |
-
num_frames = latent_window_size * 4 - 3
|
182 |
|
183 |
-
history_latents = torch.zeros(size=(1, 16, 1 + 2 + 16, height // 8, width // 8), dtype=torch.float32).cpu()
|
184 |
-
history_pixels = None
|
185 |
-
total_generated_latent_frames = 0
|
186 |
|
187 |
-
latent_paddings = reversed(range(total_latent_sections))
|
188 |
|
189 |
-
if total_latent_sections > 4:
|
190 |
-
# In theory the latent_paddings should follow the above sequence, but it seems that duplicating some
|
191 |
-
# items looks better than expanding it when total_latent_sections > 4
|
192 |
-
# One can try to remove below trick and just
|
193 |
-
# use `latent_paddings = list(reversed(range(total_latent_sections)))` to compare
|
194 |
-
latent_paddings = [3] + [2] * (total_latent_sections - 3) + [1, 0]
|
195 |
|
196 |
-
for latent_padding in latent_paddings:
|
197 |
-
is_last_section = latent_padding == 0
|
198 |
-
latent_padding_size = latent_padding * latent_window_size
|
199 |
|
200 |
-
if stream.input_queue.top() == 'end':
|
201 |
-
stream.output_queue.push(('end', None))
|
202 |
-
return
|
203 |
|
204 |
-
print(f'latent_padding_size = {latent_padding_size}, is_last_section = {is_last_section}')
|
205 |
|
206 |
-
indices = torch.arange(0, sum([1, latent_padding_size, latent_window_size, 1, 2, 16])).unsqueeze(0)
|
207 |
-
clean_latent_indices_pre, blank_indices, latent_indices, clean_latent_indices_post, clean_latent_2x_indices, clean_latent_4x_indices = indices.split([1, latent_padding_size, latent_window_size, 1, 2, 16], dim=1)
|
208 |
-
clean_latent_indices = torch.cat([clean_latent_indices_pre, clean_latent_indices_post], dim=1)
|
209 |
|
210 |
-
clean_latents_pre = start_latent.to(history_latents)
|
211 |
-
clean_latents_post, clean_latents_2x, clean_latents_4x = history_latents[:, :, :1 + 2 + 16, :, :].split([1, 2, 16], dim=2)
|
212 |
-
clean_latents = torch.cat([clean_latents_pre, clean_latents_post], dim=2)
|
213 |
|
214 |
-
if not high_vram:
|
215 |
-
unload_complete_models()
|
216 |
-
move_model_to_device_with_memory_preservation(transformer, target_device=gpu, preserved_memory_gb=gpu_memory_preservation)
|
217 |
|
218 |
-
if use_teacache:
|
219 |
-
transformer.initialize_teacache(enable_teacache=True, num_steps=steps)
|
220 |
-
else:
|
221 |
-
transformer.initialize_teacache(enable_teacache=False)
|
222 |
|
223 |
-
def callback(d):
|
224 |
-
preview = d['denoised']
|
225 |
-
preview = vae_decode_fake(preview)
|
226 |
|
227 |
-
preview = (preview * 255.0).detach().cpu().numpy().clip(0, 255).astype(np.uint8)
|
228 |
-
preview = einops.rearrange(preview, 'b c t h w -> (b h) (t w) c')
|
229 |
|
230 |
-
if stream.input_queue.top() == 'end':
|
231 |
-
stream.output_queue.push(('end', None))
|
232 |
-
raise KeyboardInterrupt('User ends the task.')
|
233 |
|
234 |
-
current_step = d['i'] + 1
|
235 |
-
percentage = int(100.0 * current_step / steps)
|
236 |
-
hint = f'Sampling {current_step}/{steps}'
|
237 |
-
desc = f'Total generated frames: {int(max(0, total_generated_latent_frames * 4 - 3))}, Video length: {max(0, (total_generated_latent_frames * 4 - 3) / 30) :.2f} seconds (FPS-30). The video is being extended now ...'
|
238 |
-
stream.output_queue.push(('progress', (preview, desc, make_progress_bar_html(percentage, hint))))
|
239 |
-
return
|
240 |
|
241 |
-
generated_latents = sample_hunyuan(
|
242 |
-
transformer=transformer,
|
243 |
-
sampler='unipc',
|
244 |
-
width=width,
|
245 |
-
height=height,
|
246 |
-
frames=num_frames,
|
247 |
-
real_guidance_scale=cfg,
|
248 |
-
distilled_guidance_scale=gs,
|
249 |
-
guidance_rescale=rs,
|
250 |
-
# shift=3.0,
|
251 |
-
num_inference_steps=steps,
|
252 |
-
generator=rnd,
|
253 |
-
prompt_embeds=llama_vec,
|
254 |
-
prompt_embeds_mask=llama_attention_mask,
|
255 |
-
prompt_poolers=clip_l_pooler,
|
256 |
-
negative_prompt_embeds=llama_vec_n,
|
257 |
-
negative_prompt_embeds_mask=llama_attention_mask_n,
|
258 |
-
negative_prompt_poolers=clip_l_pooler_n,
|
259 |
-
device=gpu,
|
260 |
-
dtype=torch.bfloat16,
|
261 |
-
image_embeddings=image_encoder_last_hidden_state,
|
262 |
-
latent_indices=latent_indices,
|
263 |
-
clean_latents=clean_latents,
|
264 |
-
clean_latent_indices=clean_latent_indices,
|
265 |
-
clean_latents_2x=clean_latents_2x,
|
266 |
-
clean_latent_2x_indices=clean_latent_2x_indices,
|
267 |
-
clean_latents_4x=clean_latents_4x,
|
268 |
-
clean_latent_4x_indices=clean_latent_4x_indices,
|
269 |
-
callback=callback,
|
270 |
-
)
|
271 |
-
|
272 |
-
if is_last_section:
|
273 |
-
generated_latents = torch.cat([start_latent.to(generated_latents), generated_latents], dim=2)
|
274 |
-
|
275 |
-
total_generated_latent_frames += int(generated_latents.shape[2])
|
276 |
-
history_latents = torch.cat([generated_latents.to(history_latents), history_latents], dim=2)
|
277 |
-
|
278 |
-
if not high_vram:
|
279 |
-
offload_model_from_device_for_memory_preservation(transformer, target_device=gpu, preserved_memory_gb=8)
|
280 |
-
load_model_as_complete(vae, target_device=gpu)
|
281 |
-
|
282 |
-
real_history_latents = history_latents[:, :, :total_generated_latent_frames, :, :]
|
283 |
-
|
284 |
-
if history_pixels is None:
|
285 |
-
history_pixels = vae_decode(real_history_latents, vae).cpu()
|
286 |
-
else:
|
287 |
-
section_latent_frames = (latent_window_size * 2 + 1) if is_last_section else (latent_window_size * 2)
|
288 |
-
overlapped_frames = latent_window_size * 4 - 3
|
289 |
-
|
290 |
-
current_pixels = vae_decode(real_history_latents[:, :, :section_latent_frames], vae).cpu()
|
291 |
-
history_pixels = soft_append_bcthw(current_pixels, history_pixels, overlapped_frames)
|
292 |
-
|
293 |
-
if not high_vram:
|
294 |
-
unload_complete_models()
|
295 |
-
|
296 |
-
output_filename = os.path.join(outputs_folder, f'{job_id}_{total_generated_latent_frames}.mp4')
|
297 |
-
|
298 |
-
save_bcthw_as_mp4(history_pixels, output_filename, fps=30)
|
299 |
-
|
300 |
-
print(f'Decoded. Current latent shape {real_history_latents.shape}; pixel shape {history_pixels.shape}')
|
301 |
-
|
302 |
-
stream.output_queue.push(('file', output_filename))
|
303 |
-
|
304 |
-
if is_last_section:
|
305 |
-
break
|
306 |
-
except:
|
307 |
-
traceback.print_exc()
|
308 |
-
|
309 |
-
if not high_vram:
|
310 |
-
unload_complete_models(
|
311 |
-
text_encoder, text_encoder_2, image_encoder, vae, transformer
|
312 |
-
)
|
313 |
-
|
314 |
-
stream.output_queue.push(('end', None))
|
315 |
-
return
|
316 |
|
317 |
|
318 |
def process(input_image, prompt, n_prompt, seed, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache):
|
@@ -343,8 +376,8 @@ def process(input_image, prompt, n_prompt, seed, total_second_length, latent_win
|
|
343 |
break
|
344 |
|
345 |
|
346 |
-
|
347 |
-
|
348 |
|
349 |
|
350 |
quick_prompts = [
|
@@ -355,42 +388,35 @@ quick_prompts = [[x] for x in quick_prompts]
|
|
355 |
|
356 |
|
357 |
css = make_progress_bar_css()
|
|
|
358 |
block = gr.Blocks(css=css).queue()
|
359 |
with block:
|
360 |
gr.Markdown('# FramePack')
|
361 |
-
with gr.Row():
|
362 |
-
with gr.Column():
|
363 |
-
input_image = gr.Image(sources='upload', type="numpy", label="Image", height=320)
|
364 |
-
prompt = gr.Textbox(label="Prompt", value='')
|
365 |
-
example_quick_prompts = gr.Dataset(samples=quick_prompts, label='Quick List', samples_per_page=1000, components=[prompt])
|
366 |
-
example_quick_prompts.click(lambda x: x[0], inputs=[example_quick_prompts], outputs=prompt, show_progress=False, queue=False)
|
367 |
-
|
368 |
-
with gr.Row():
|
369 |
-
start_button = gr.Button(value="Start Generation")
|
370 |
end_button = gr.Button(value="End Generation", interactive=False)
|
371 |
|
372 |
with gr.Group():
|
373 |
-
use_teacache = gr.Checkbox(label='Use TeaCache', value=True
|
|
|
374 |
|
375 |
-
n_prompt = gr.Textbox(label="Negative Prompt", value="", visible=False) # Not used
|
376 |
seed = gr.Number(label="Seed", value=31337, precision=0)
|
377 |
|
378 |
total_second_length = gr.Slider(label="Total Video Length (Seconds)", minimum=1, maximum=120, value=5, step=0.1)
|
379 |
-
latent_window_size = gr.Slider(label="Latent Window Size", minimum=1, maximum=33, value=9, step=1, visible=False)
|
380 |
-
steps = gr.Slider(label="Steps", minimum=1, maximum=100, value=25, step=1
|
|
|
|
|
|
|
|
|
381 |
|
382 |
-
cfg = gr.Slider(label="CFG Scale", minimum=1.0, maximum=32.0, value=1.0, step=0.01, visible=False) # Should not change
|
383 |
-
gs = gr.Slider(label="Distilled CFG Scale", minimum=1.0, maximum=32.0, value=10.0, step=0.01, info='Changing this value is not recommended.')
|
384 |
-
rs = gr.Slider(label="CFG Re-Scale", minimum=0.0, maximum=1.0, value=0.0, step=0.01, visible=False) # Should not change
|
385 |
|
386 |
-
gpu_memory_preservation = gr.Slider(label="GPU Inference Preserved Memory (GB) (larger means slower)", minimum=6, maximum=128, value=6, step=0.1, info="Set this number to a larger value if you encounter OOM. Larger value causes slower speed.")
|
387 |
|
388 |
with gr.Column():
|
389 |
preview_image = gr.Image(label="Next Latents", height=200, visible=False)
|
390 |
result_video = gr.Video(label="Finished Frames", autoplay=True, show_share_button=False, height=512, loop=True)
|
391 |
-
gr.Markdown('Note
|
392 |
progress_desc = gr.Markdown('', elem_classes='no-generating-animation')
|
393 |
progress_bar = gr.HTML('', elem_classes='no-generating-animation')
|
|
|
394 |
ips = [input_image, prompt, n_prompt, seed, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache]
|
395 |
start_button.click(fn=process, inputs=ips, outputs=[result_video, preview_image, progress_desc, progress_bar, start_button, end_button])
|
396 |
end_button.click(fn=end_process)
|
@@ -398,7 +424,4 @@ with block:
|
|
398 |
|
399 |
block.launch(
|
400 |
server_name=args.server,
|
401 |
-
server_port=args.port,
|
402 |
-
share=args.share,
|
403 |
-
inbrowser=args.inbrowser,
|
404 |
-
)
|
|
|
|
|
1 |
|
2 |
import os
|
3 |
+
import argparse
|
4 |
+
|
5 |
|
|
|
6 |
|
|
|
7 |
import torch
|
8 |
+
import gradio as gr
|
9 |
+
|
10 |
+
|
11 |
import numpy as np
|
12 |
+
import einops
|
13 |
+
import traceback
|
14 |
|
15 |
from PIL import Image
|
16 |
from diffusers import AutoencoderKLHunyuanVideo
|
17 |
+
from transformers import (
|
18 |
+
LlamaModel, CLIPTextModel,
|
19 |
+
LlamaTokenizerFast, CLIPTokenizer,
|
20 |
+
SiglipImageProcessor, SiglipVisionModel
|
21 |
+
)
|
22 |
+
|
23 |
+
from diffusers_helper.hf_login import login
|
24 |
+
from diffusers_helper.hunyuan import (
|
25 |
+
encode_prompt_conds, vae_decode, vae_encode,
|
26 |
+
vae_decode_fake
|
27 |
+
)
|
28 |
+
from diffusers_helper.utils import (
|
29 |
+
save_bcthw_as_mp4, crop_or_pad_yield_mask, soft_append_bcthw,
|
30 |
+
resize_and_center_crop, generate_timestamp
|
31 |
+
)
|
32 |
from diffusers_helper.models.hunyuan_video_packed import HunyuanVideoTransformer3DModelPacked
|
33 |
from diffusers_helper.pipelines.k_diffusion_hunyuan import sample_hunyuan
|
34 |
+
from diffusers_helper.memory import (
|
35 |
+
gpu, get_cuda_free_memory_gb, unload_complete_models, load_model_as_complete,
|
36 |
+
DynamicSwapInstaller, move_model_to_device_with_memory_preservation,
|
37 |
+
offload_model_from_device_for_memory_preservation, fake_diffusers_current_device
|
38 |
+
)
|
39 |
from diffusers_helper.clip_vision import hf_clip_vision_encode
|
40 |
+
from diffusers_helper.thread_utils import AsyncStream, async_run
|
41 |
|
42 |
|
43 |
+
# --- Args and config ---
|
44 |
parser = argparse.ArgumentParser()
|
45 |
parser.add_argument('--share', action='store_true')
|
46 |
+
parser.add_argument('--server', type=str, default='0.0.0.0')
|
47 |
+
parser.add_argument('--port', type=int, required=False)
|
48 |
+
parser.add_argument('--inbrowser', action='store_true')
|
49 |
args = parser.parse_args()
|
50 |
|
51 |
+
os.environ['HF_HOME'] = os.path.abspath(
|
52 |
+
os.path.realpath(os.path.join(os.path.dirname(__file__), './hf_download'))
|
53 |
+
)
|
54 |
|
55 |
print(args)
|
56 |
|
|
|
60 |
print(f'Free VRAM {free_mem_gb} GB')
|
61 |
print(f'High-VRAM Mode: {high_vram}')
|
62 |
|
63 |
+
# --- Load models ---
|
64 |
text_encoder = LlamaModel.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='text_encoder', torch_dtype=torch.float16).cpu()
|
65 |
text_encoder_2 = CLIPTextModel.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='text_encoder_2', torch_dtype=torch.float16).cpu()
|
66 |
tokenizer = LlamaTokenizerFast.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='tokenizer')
|
|
|
72 |
|
73 |
transformer = HunyuanVideoTransformer3DModelPacked.from_pretrained('lllyasviel/FramePackI2V_HY', torch_dtype=torch.bfloat16).cpu()
|
74 |
|
75 |
+
vae.eval(), text_encoder.eval(), text_encoder_2.eval(), image_encoder.eval(), transformer.eval()
|
76 |
+
|
77 |
+
|
78 |
+
|
79 |
+
|
80 |
|
81 |
if not high_vram:
|
82 |
vae.enable_slicing()
|
83 |
vae.enable_tiling()
|
84 |
|
85 |
transformer.high_quality_fp32_output_for_inference = True
|
86 |
+
|
87 |
|
88 |
transformer.to(dtype=torch.bfloat16)
|
89 |
vae.to(dtype=torch.float16)
|
|
|
91 |
text_encoder.to(dtype=torch.float16)
|
92 |
text_encoder_2.to(dtype=torch.float16)
|
93 |
|
94 |
+
for model in [vae, text_encoder, text_encoder_2, image_encoder, transformer]:
|
95 |
+
model.requires_grad_(False)
|
96 |
+
|
97 |
+
|
98 |
+
|
99 |
|
100 |
if not high_vram:
|
101 |
+
|
102 |
DynamicSwapInstaller.install_model(transformer, device=gpu)
|
103 |
DynamicSwapInstaller.install_model(text_encoder, device=gpu)
|
104 |
else:
|
|
|
|
|
|
|
|
|
105 |
transformer.to(gpu)
|
106 |
|
107 |
stream = AsyncStream()
|
|
|
109 |
outputs_folder = './outputs/'
|
110 |
os.makedirs(outputs_folder, exist_ok=True)
|
111 |
|
112 |
+
# --- UI + CSS ---
|
113 |
+
def make_progress_bar_css():
|
114 |
+
return """
|
115 |
+
body, .gradio-container {
|
116 |
+
background-color: #000000 !important;
|
117 |
+
color: #FFFFFF !important;
|
118 |
+
}
|
119 |
+
.gr-button, .gr-input, .gr-textbox, .gr-slider, .gr-checkbox {
|
120 |
+
background-color: #1a1a1a !important;
|
121 |
+
color: #ffffff !important;
|
122 |
+
border-color: #444 !important;
|
123 |
+
}
|
124 |
+
.gr-button:hover {
|
125 |
+
background-color: #333 !important;
|
126 |
+
}
|
127 |
+
.gr-markdown {
|
128 |
+
color: #ddd !important;
|
129 |
+
}
|
130 |
+
.gr-image-preview, .gr-video {
|
131 |
+
background-color: #111 !important;
|
132 |
+
}
|
133 |
+
"""
|
134 |
+
|
135 |
+
def end_process():
|
136 |
+
stream.input_queue.push('end')
|
137 |
+
|
138 |
+
|
139 |
+
|
140 |
+
|
141 |
+
|
142 |
+
|
143 |
+
|
144 |
+
|
145 |
+
|
146 |
+
|
147 |
+
|
148 |
+
|
149 |
+
|
150 |
+
|
151 |
+
|
152 |
+
|
153 |
+
|
154 |
+
|
155 |
+
|
156 |
+
|
157 |
+
|
158 |
+
|
159 |
+
|
160 |
+
|
161 |
+
|
162 |
+
|
163 |
+
|
164 |
+
|
165 |
+
|
166 |
+
|
167 |
+
|
168 |
+
|
169 |
+
|
170 |
+
|
171 |
+
|
172 |
+
|
173 |
+
|
174 |
+
|
175 |
+
|
176 |
+
|
177 |
+
|
178 |
+
|
179 |
+
|
180 |
+
|
181 |
+
|
182 |
+
|
183 |
+
|
184 |
+
|
185 |
+
|
186 |
+
|
187 |
+
|
188 |
+
|
189 |
+
|
190 |
+
|
191 |
+
|
192 |
+
|
193 |
+
|
194 |
+
|
195 |
+
|
196 |
+
|
197 |
+
|
198 |
+
|
199 |
+
|
200 |
+
|
201 |
+
|
202 |
+
|
203 |
+
|
204 |
+
|
205 |
+
|
206 |
+
|
207 |
+
|
208 |
+
|
209 |
+
|
210 |
+
|
211 |
+
|
212 |
+
|
213 |
+
|
214 |
+
|
215 |
+
|
216 |
+
|
217 |
+
|
218 |
+
|
219 |
+
|
220 |
+
|
221 |
+
|
222 |
+
|
223 |
+
|
224 |
+
|
225 |
+
|
226 |
+
|
227 |
+
|
228 |
+
|
229 |
+
|
230 |
+
|
231 |
+
|
232 |
+
|
233 |
+
|
234 |
+
|
235 |
+
|
236 |
+
|
237 |
+
|
238 |
+
|
239 |
+
|
240 |
+
|
241 |
+
|
242 |
+
|
243 |
+
|
244 |
+
|
245 |
+
|
246 |
+
|
247 |
+
|
248 |
+
|
249 |
+
|
250 |
+
|
251 |
+
|
252 |
+
|
253 |
+
|
254 |
+
|
255 |
+
|
256 |
+
|
257 |
+
|
258 |
+
|
259 |
+
|
260 |
+
|
261 |
+
|
262 |
+
|
263 |
+
|
264 |
+
|
265 |
+
|
266 |
+
|
267 |
+
|
268 |
+
|
269 |
+
|
270 |
+
|
271 |
+
|
272 |
+
|
273 |
+
|
274 |
+
|
275 |
+
|
276 |
+
|
277 |
+
|
278 |
+
|
279 |
+
|
280 |
+
|
281 |
+
|
282 |
+
|
283 |
+
|
284 |
+
|
285 |
+
|
286 |
+
|
287 |
+
|
288 |
+
|
289 |
+
|
290 |
+
|
291 |
+
|
292 |
+
|
293 |
+
|
294 |
+
|
295 |
+
|
296 |
+
|
297 |
+
|
298 |
+
|
299 |
+
|
300 |
+
|
301 |
+
|
302 |
+
|
303 |
+
|
304 |
+
|
305 |
+
|
306 |
|
|
|
|
|
|
|
|
|
307 |
|
|
|
308 |
|
|
|
309 |
|
|
|
|
|
|
|
|
|
|
|
|
|
310 |
|
|
|
311 |
|
|
|
312 |
|
|
|
|
|
|
|
313 |
|
|
|
314 |
|
|
|
|
|
|
|
|
|
315 |
|
|
|
|
|
316 |
|
|
|
317 |
|
|
|
318 |
|
|
|
|
|
|
|
319 |
|
|
|
320 |
|
|
|
|
|
321 |
|
|
|
322 |
|
|
|
323 |
|
|
|
|
|
324 |
|
|
|
325 |
|
|
|
326 |
|
|
|
327 |
|
|
|
|
|
328 |
|
|
|
|
|
329 |
|
|
|
330 |
|
|
|
|
|
|
|
|
|
|
|
331 |
|
|
|
332 |
|
|
|
333 |
|
|
|
|
|
334 |
|
|
|
|
|
|
|
335 |
|
|
|
336 |
|
|
|
|
|
|
|
|
|
|
|
|
|
337 |
|
|
|
|
|
|
|
338 |
|
|
|
|
|
|
|
339 |
|
|
|
340 |
|
|
|
|
|
|
|
341 |
|
|
|
|
|
|
|
342 |
|
|
|
|
|
|
|
343 |
|
|
|
|
|
|
|
|
|
344 |
|
|
|
|
|
|
|
345 |
|
|
|
|
|
346 |
|
|
|
|
|
|
|
347 |
|
|
|
|
|
|
|
|
|
|
|
|
|
348 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
349 |
|
350 |
|
351 |
def process(input_image, prompt, n_prompt, seed, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache):
|
|
|
376 |
break
|
377 |
|
378 |
|
379 |
+
|
380 |
+
|
381 |
|
382 |
|
383 |
quick_prompts = [
|
|
|
388 |
|
389 |
|
390 |
css = make_progress_bar_css()
|
391 |
+
|
392 |
block = gr.Blocks(css=css).queue()
|
393 |
with block:
|
394 |
gr.Markdown('# FramePack')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
395 |
end_button = gr.Button(value="End Generation", interactive=False)
|
396 |
|
397 |
with gr.Group():
|
398 |
+
use_teacache = gr.Checkbox(label='Use TeaCache', value=True)
|
399 |
+
n_prompt = gr.Textbox(label="Negative Prompt", value="", visible=False)
|
400 |
|
|
|
401 |
seed = gr.Number(label="Seed", value=31337, precision=0)
|
402 |
|
403 |
total_second_length = gr.Slider(label="Total Video Length (Seconds)", minimum=1, maximum=120, value=5, step=0.1)
|
404 |
+
latent_window_size = gr.Slider(label="Latent Window Size", minimum=1, maximum=33, value=9, step=1, visible=False)
|
405 |
+
steps = gr.Slider(label="Steps", minimum=1, maximum=100, value=25, step=1)
|
406 |
+
cfg = gr.Slider(label="CFG Scale", minimum=1.0, maximum=32.0, value=1.0, step=0.01, visible=False)
|
407 |
+
gs = gr.Slider(label="Distilled CFG Scale", minimum=1.0, maximum=32.0, value=10.0, step=0.01)
|
408 |
+
rs = gr.Slider(label="CFG Re-Scale", minimum=0.0, maximum=1.0, value=0.0, step=0.01, visible=False)
|
409 |
+
gpu_memory_preservation = gr.Slider(label="GPU Inference Preserved Memory (GB)", minimum=6, maximum=128, value=6, step=0.1)
|
410 |
|
|
|
|
|
|
|
411 |
|
|
|
412 |
|
413 |
with gr.Column():
|
414 |
preview_image = gr.Image(label="Next Latents", height=200, visible=False)
|
415 |
result_video = gr.Video(label="Finished Frames", autoplay=True, show_share_button=False, height=512, loop=True)
|
416 |
+
gr.Markdown('Note: The ending actions are generated before the start. Wait for full video.')
|
417 |
progress_desc = gr.Markdown('', elem_classes='no-generating-animation')
|
418 |
progress_bar = gr.HTML('', elem_classes='no-generating-animation')
|
419 |
+
|
420 |
ips = [input_image, prompt, n_prompt, seed, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache]
|
421 |
start_button.click(fn=process, inputs=ips, outputs=[result_video, preview_image, progress_desc, progress_bar, start_button, end_button])
|
422 |
end_button.click(fn=end_process)
|
|
|
424 |
|
425 |
block.launch(
|
426 |
server_name=args.server,
|
427 |
+
server_port=args.port,
|
|
|
|
|
|