Spaces:
Sleeping
Sleeping
import gradio as gr | |
from transformers import pipeline | |
import torch | |
# Initialize the text generation pipeline with the model | |
generator = pipeline( | |
"text-generation", | |
model="thirdeyeai/DeepSeek-R1-Distill-Qwen-1.5B-uncensored", | |
torch_dtype=torch.float16, | |
device_map="auto" | |
) | |
def generate_text(prompt, max_length=100, temperature=0.7, top_p=0.9): | |
"""Generate text based on prompt using the pipeline""" | |
# Calculate max_new_tokens from max_length | |
# This is approximate as token count doesn't directly map to character count | |
max_new_tokens = max_length // 4 # rough estimate of 4 chars per token | |
# Generate text | |
response = generator( | |
prompt, | |
max_new_tokens=max_new_tokens, | |
temperature=temperature, | |
top_p=top_p, | |
do_sample=True, | |
return_full_text=True | |
) | |
# Extract the generated text from the response | |
generated_text = response[0]['generated_text'] | |
return generated_text | |
# Create Gradio interface | |
demo = gr.Interface( | |
fn=generate_text, | |
inputs=[ | |
gr.Textbox(lines=5, placeholder="Enter your prompt here...", label="Prompt"), | |
gr.Slider(minimum=10, maximum=500, value=100, step=10, label="Max Length (approx. characters)"), | |
gr.Slider(minimum=0.1, maximum=2.0, value=0.7, step=0.1, label="Temperature"), | |
gr.Slider(minimum=0.1, maximum=1.0, value=0.9, step=0.05, label="Top-p") | |
], | |
outputs=gr.Textbox(label="Generated Text"), | |
title="DeepSeek-R1-Distill-Qwen-1.5B Demo", | |
description="Enter a prompt to generate text with the DeepSeek-R1-Distill-Qwen-1.5B-uncensored model." | |
) | |
# Launch the app | |
demo.launch() |