distilltest / app.py
genesisclay's picture
Update app.py
68d5e32 verified
import gradio as gr
from transformers import pipeline
import torch
# Initialize the text generation pipeline with the model
generator = pipeline(
"text-generation",
model="thirdeyeai/DeepSeek-R1-Distill-Qwen-1.5B-uncensored",
torch_dtype=torch.float16,
device_map="auto"
)
def generate_text(prompt, max_length=100, temperature=0.7, top_p=0.9):
"""Generate text based on prompt using the pipeline"""
# Calculate max_new_tokens from max_length
# This is approximate as token count doesn't directly map to character count
max_new_tokens = max_length // 4 # rough estimate of 4 chars per token
# Generate text
response = generator(
prompt,
max_new_tokens=max_new_tokens,
temperature=temperature,
top_p=top_p,
do_sample=True,
return_full_text=True
)
# Extract the generated text from the response
generated_text = response[0]['generated_text']
return generated_text
# Create Gradio interface
demo = gr.Interface(
fn=generate_text,
inputs=[
gr.Textbox(lines=5, placeholder="Enter your prompt here...", label="Prompt"),
gr.Slider(minimum=10, maximum=500, value=100, step=10, label="Max Length (approx. characters)"),
gr.Slider(minimum=0.1, maximum=2.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(minimum=0.1, maximum=1.0, value=0.9, step=0.05, label="Top-p")
],
outputs=gr.Textbox(label="Generated Text"),
title="DeepSeek-R1-Distill-Qwen-1.5B Demo",
description="Enter a prompt to generate text with the DeepSeek-R1-Distill-Qwen-1.5B-uncensored model."
)
# Launch the app
demo.launch()