Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,34 +1,33 @@
|
|
1 |
import gradio as gr
|
2 |
-
from transformers import
|
3 |
import torch
|
4 |
|
5 |
-
#
|
6 |
-
|
7 |
-
|
8 |
-
model
|
9 |
-
|
10 |
-
|
11 |
-
low_cpu_mem_usage=True,
|
12 |
-
device_map="auto" # Automatically use available devices
|
13 |
)
|
14 |
|
15 |
def generate_text(prompt, max_length=100, temperature=0.7, top_p=0.9):
|
16 |
-
"""Generate text based on prompt"""
|
17 |
-
|
|
|
|
|
18 |
|
19 |
-
# Generate
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
)
|
29 |
|
30 |
-
#
|
31 |
-
generated_text =
|
32 |
return generated_text
|
33 |
|
34 |
# Create Gradio interface
|
@@ -36,7 +35,7 @@ demo = gr.Interface(
|
|
36 |
fn=generate_text,
|
37 |
inputs=[
|
38 |
gr.Textbox(lines=5, placeholder="Enter your prompt here...", label="Prompt"),
|
39 |
-
gr.Slider(minimum=10, maximum=500, value=100, step=10, label="Max Length"),
|
40 |
gr.Slider(minimum=0.1, maximum=2.0, value=0.7, step=0.1, label="Temperature"),
|
41 |
gr.Slider(minimum=0.1, maximum=1.0, value=0.9, step=0.05, label="Top-p")
|
42 |
],
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import pipeline
|
3 |
import torch
|
4 |
|
5 |
+
# Initialize the text generation pipeline with the model
|
6 |
+
generator = pipeline(
|
7 |
+
"text-generation",
|
8 |
+
model="thirdeyeai/DeepSeek-R1-Distill-Qwen-1.5B-uncensored",
|
9 |
+
torch_dtype=torch.float16,
|
10 |
+
device_map="auto"
|
|
|
|
|
11 |
)
|
12 |
|
13 |
def generate_text(prompt, max_length=100, temperature=0.7, top_p=0.9):
|
14 |
+
"""Generate text based on prompt using the pipeline"""
|
15 |
+
# Calculate max_new_tokens from max_length
|
16 |
+
# This is approximate as token count doesn't directly map to character count
|
17 |
+
max_new_tokens = max_length // 4 # rough estimate of 4 chars per token
|
18 |
|
19 |
+
# Generate text
|
20 |
+
response = generator(
|
21 |
+
prompt,
|
22 |
+
max_new_tokens=max_new_tokens,
|
23 |
+
temperature=temperature,
|
24 |
+
top_p=top_p,
|
25 |
+
do_sample=True,
|
26 |
+
return_full_text=True
|
27 |
+
)
|
|
|
28 |
|
29 |
+
# Extract the generated text from the response
|
30 |
+
generated_text = response[0]['generated_text']
|
31 |
return generated_text
|
32 |
|
33 |
# Create Gradio interface
|
|
|
35 |
fn=generate_text,
|
36 |
inputs=[
|
37 |
gr.Textbox(lines=5, placeholder="Enter your prompt here...", label="Prompt"),
|
38 |
+
gr.Slider(minimum=10, maximum=500, value=100, step=10, label="Max Length (approx. characters)"),
|
39 |
gr.Slider(minimum=0.1, maximum=2.0, value=0.7, step=0.1, label="Temperature"),
|
40 |
gr.Slider(minimum=0.1, maximum=1.0, value=0.9, step=0.05, label="Top-p")
|
41 |
],
|