gauravprakashh commited on
Commit
5387912
·
verified ·
1 Parent(s): 7d31858

Create postprocess.py

Browse files
Files changed (1) hide show
  1. postprocess.py +76 -0
postprocess.py ADDED
@@ -0,0 +1,76 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+
3
+
4
+ def softmax(x: np.ndarray, axis=1) -> np.ndarray:
5
+ """
6
+ Computes softmax array along the specified axis.
7
+ """
8
+ e_x = np.exp(x)
9
+ return e_x / e_x.sum(axis=axis, keepdims=True)
10
+
11
+
12
+ def calibrate_sentiment_score(
13
+ sentiment: float,
14
+ thresh_neg: float,
15
+ thresh_pos: float,
16
+ zero: float = 0,
17
+ ) -> float:
18
+ if thresh_neg != (zero - 1) / 2:
19
+ alpha_neg = -(3 * zero - 1 - 4 * thresh_neg) / (2 * zero - 2 - 4 * thresh_neg) / 2
20
+ if -1 < alpha_neg and alpha_neg < 0:
21
+ raise ValueError(f"Incorrect value: {thresh_neg=} is too far from -0.5!")
22
+ if thresh_pos != (zero + 1) / 2:
23
+ alpha_pos = -(4 * thresh_pos - 1 - 3 * zero) / (2 + 2 * zero - 4 * thresh_pos) / 2
24
+ if 0 < alpha_pos and alpha_pos < 1:
25
+ raise ValueError(f"Incorrect value: {thresh_pos=} is too far from 0.5!")
26
+ if sentiment < 0:
27
+ return (2 * zero - 2 - 4 * thresh_neg) * sentiment**2 + (3 * zero - 1 - 4 * thresh_neg) * sentiment + zero
28
+ elif sentiment > 0:
29
+ return (2 + 2 * zero - 4 * thresh_pos) * sentiment**2 + (4 * thresh_pos - 1 - 3 * zero) * sentiment + zero
30
+ return zero
31
+
32
+
33
+ def calibrate_sentiment(
34
+ sentiments: np.ndarray[float],
35
+ thresh_neg: float,
36
+ thresh_pos: float,
37
+ zero: float,
38
+ ) -> np.ndarray[np.float64]:
39
+ result = np.array(
40
+ [
41
+ calibrate_sentiment_score(sentiment, thresh_neg=thresh_neg, thresh_pos=thresh_pos, zero=zero)
42
+ for sentiment in sentiments
43
+ ]
44
+ )
45
+ return result.astype(np.float64)
46
+
47
+
48
+ def scale_value(value, in_min, in_max, out_min, out_max):
49
+ if in_min <= value <= in_max:
50
+ scaled_value = (value - in_min) / (in_max - in_min) * (out_max - out_min) + out_min
51
+ return scaled_value.round(3)
52
+ else:
53
+ raise ValueError(f"Input value must be in the range [{in_min}, {in_max}]")
54
+
55
+
56
+
57
+ def get_sentiment(
58
+ logits: np.ndarray,
59
+ thresh_neg: float,
60
+ thresh_pos: float,
61
+ zero: float,
62
+ ):
63
+ probabilities = softmax(logits, axis=1)
64
+ sentiments = np.matmul(probabilities, np.arange(5)) / 2 - 1
65
+ score = calibrate_sentiment(
66
+ sentiments=sentiments,
67
+ thresh_neg=thresh_neg,
68
+ thresh_pos=thresh_pos,
69
+ zero=zero,
70
+ )[0]
71
+ if score < -0.33:
72
+ return scale_value(score, -1, -0.33, 0, 1), "NEGATIVE"
73
+ elif score < 0.33:
74
+ return scale_value(score, -0.33, 0.33, 0, 1), "NEUTRAL"
75
+ else:
76
+ return scale_value(score, 0.33, 1, 0, 1), "POSITIVE"