Spaces:
Runtime error
Runtime error
Create postprocess.py
Browse files- postprocess.py +76 -0
postprocess.py
ADDED
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
|
3 |
+
|
4 |
+
def softmax(x: np.ndarray, axis=1) -> np.ndarray:
|
5 |
+
"""
|
6 |
+
Computes softmax array along the specified axis.
|
7 |
+
"""
|
8 |
+
e_x = np.exp(x)
|
9 |
+
return e_x / e_x.sum(axis=axis, keepdims=True)
|
10 |
+
|
11 |
+
|
12 |
+
def calibrate_sentiment_score(
|
13 |
+
sentiment: float,
|
14 |
+
thresh_neg: float,
|
15 |
+
thresh_pos: float,
|
16 |
+
zero: float = 0,
|
17 |
+
) -> float:
|
18 |
+
if thresh_neg != (zero - 1) / 2:
|
19 |
+
alpha_neg = -(3 * zero - 1 - 4 * thresh_neg) / (2 * zero - 2 - 4 * thresh_neg) / 2
|
20 |
+
if -1 < alpha_neg and alpha_neg < 0:
|
21 |
+
raise ValueError(f"Incorrect value: {thresh_neg=} is too far from -0.5!")
|
22 |
+
if thresh_pos != (zero + 1) / 2:
|
23 |
+
alpha_pos = -(4 * thresh_pos - 1 - 3 * zero) / (2 + 2 * zero - 4 * thresh_pos) / 2
|
24 |
+
if 0 < alpha_pos and alpha_pos < 1:
|
25 |
+
raise ValueError(f"Incorrect value: {thresh_pos=} is too far from 0.5!")
|
26 |
+
if sentiment < 0:
|
27 |
+
return (2 * zero - 2 - 4 * thresh_neg) * sentiment**2 + (3 * zero - 1 - 4 * thresh_neg) * sentiment + zero
|
28 |
+
elif sentiment > 0:
|
29 |
+
return (2 + 2 * zero - 4 * thresh_pos) * sentiment**2 + (4 * thresh_pos - 1 - 3 * zero) * sentiment + zero
|
30 |
+
return zero
|
31 |
+
|
32 |
+
|
33 |
+
def calibrate_sentiment(
|
34 |
+
sentiments: np.ndarray[float],
|
35 |
+
thresh_neg: float,
|
36 |
+
thresh_pos: float,
|
37 |
+
zero: float,
|
38 |
+
) -> np.ndarray[np.float64]:
|
39 |
+
result = np.array(
|
40 |
+
[
|
41 |
+
calibrate_sentiment_score(sentiment, thresh_neg=thresh_neg, thresh_pos=thresh_pos, zero=zero)
|
42 |
+
for sentiment in sentiments
|
43 |
+
]
|
44 |
+
)
|
45 |
+
return result.astype(np.float64)
|
46 |
+
|
47 |
+
|
48 |
+
def scale_value(value, in_min, in_max, out_min, out_max):
|
49 |
+
if in_min <= value <= in_max:
|
50 |
+
scaled_value = (value - in_min) / (in_max - in_min) * (out_max - out_min) + out_min
|
51 |
+
return scaled_value.round(3)
|
52 |
+
else:
|
53 |
+
raise ValueError(f"Input value must be in the range [{in_min}, {in_max}]")
|
54 |
+
|
55 |
+
|
56 |
+
|
57 |
+
def get_sentiment(
|
58 |
+
logits: np.ndarray,
|
59 |
+
thresh_neg: float,
|
60 |
+
thresh_pos: float,
|
61 |
+
zero: float,
|
62 |
+
):
|
63 |
+
probabilities = softmax(logits, axis=1)
|
64 |
+
sentiments = np.matmul(probabilities, np.arange(5)) / 2 - 1
|
65 |
+
score = calibrate_sentiment(
|
66 |
+
sentiments=sentiments,
|
67 |
+
thresh_neg=thresh_neg,
|
68 |
+
thresh_pos=thresh_pos,
|
69 |
+
zero=zero,
|
70 |
+
)[0]
|
71 |
+
if score < -0.33:
|
72 |
+
return scale_value(score, -1, -0.33, 0, 1), "NEGATIVE"
|
73 |
+
elif score < 0.33:
|
74 |
+
return scale_value(score, -0.33, 0.33, 0, 1), "NEUTRAL"
|
75 |
+
else:
|
76 |
+
return scale_value(score, 0.33, 1, 0, 1), "POSITIVE"
|