Spaces:
Runtime error
Runtime error
Create onnx_model.py
Browse files- onnx_model.py +84 -0
onnx_model.py
ADDED
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from __future__ import annotations
|
2 |
+
|
3 |
+
import json
|
4 |
+
from dataclasses import dataclass
|
5 |
+
from pathlib import Path
|
6 |
+
from typing import Any
|
7 |
+
|
8 |
+
import numpy as np
|
9 |
+
import onnxruntime as ort
|
10 |
+
from loguru import logger
|
11 |
+
|
12 |
+
|
13 |
+
@dataclass
|
14 |
+
class ModelInfo:
|
15 |
+
base_model: str
|
16 |
+
|
17 |
+
@classmethod
|
18 |
+
def from_dir(cls, model_dir: Path):
|
19 |
+
with open(model_dir / "metadata.json", "r", encoding="utf-8") as file:
|
20 |
+
data = json.load(file)
|
21 |
+
return ModelInfo(base_model=data["bert_type"])
|
22 |
+
|
23 |
+
|
24 |
+
class ONNXModel:
|
25 |
+
def __init__(self, model: ort.InferenceSession, model_info: ModelInfo) -> None:
|
26 |
+
self.model = model
|
27 |
+
self.model_info = model_info
|
28 |
+
self.model_path = Path(model._model_path) # type: ignore
|
29 |
+
self.model_name = self.model_path.name
|
30 |
+
|
31 |
+
self.providers = model.get_providers()
|
32 |
+
|
33 |
+
if self.providers[0] in ["CUDAExecutionProvider", "TensorrtExecutionProvider"]:
|
34 |
+
self.device = "cuda"
|
35 |
+
else:
|
36 |
+
self.device = "cpu"
|
37 |
+
|
38 |
+
self.io_types = {
|
39 |
+
"input_ids": np.int32,
|
40 |
+
"attention_mask": np.bool_
|
41 |
+
}
|
42 |
+
|
43 |
+
self.input_names = [el.name for el in model.get_inputs()]
|
44 |
+
self.output_name = model.get_outputs()[0].name
|
45 |
+
|
46 |
+
@staticmethod
|
47 |
+
def load_session(
|
48 |
+
path: str | Path,
|
49 |
+
provider: str = "CPUExecutionProvider",
|
50 |
+
session_options: ort.SessionOptions | None = None,
|
51 |
+
provider_options: dict[str, Any] | None = None,
|
52 |
+
) -> ort.InferenceSession:
|
53 |
+
providers = [provider]
|
54 |
+
if provider == "TensorrtExecutionProvider":
|
55 |
+
providers.append("CUDAExecutionProvider")
|
56 |
+
elif provider == "CUDAExecutionProvider":
|
57 |
+
providers.append("CPUExecutionProvider")
|
58 |
+
|
59 |
+
if not isinstance(path, str):
|
60 |
+
path = Path(path) / "model.onnx"
|
61 |
+
|
62 |
+
providers_options = None
|
63 |
+
if provider_options is not None:
|
64 |
+
providers_options = [provider_options] + [{} for _ in range(len(providers) - 1)]
|
65 |
+
|
66 |
+
session = ort.InferenceSession(
|
67 |
+
str(path),
|
68 |
+
providers=providers,
|
69 |
+
sess_options=session_options,
|
70 |
+
provider_options=providers_options,
|
71 |
+
)
|
72 |
+
logger.info("Session loaded")
|
73 |
+
return session
|
74 |
+
|
75 |
+
@classmethod
|
76 |
+
def from_dir(cls, model_dir: str | Path) -> ONNXModel:
|
77 |
+
return ONNXModel(ONNXModel.load_session(model_dir), ModelInfo.from_dir(model_dir))
|
78 |
+
|
79 |
+
def __call__(self, **model_inputs: np.ndarray):
|
80 |
+
model_inputs = {
|
81 |
+
input_name: tensor.astype(self.io_types[input_name]) for input_name, tensor in model_inputs.items()
|
82 |
+
}
|
83 |
+
|
84 |
+
return self.model.run([self.output_name], model_inputs)[0]
|