Spaces:
Runtime error
Runtime error
import numpy as np | |
def softmax(x: np.ndarray, axis=1) -> np.ndarray: | |
""" | |
Computes softmax array along the specified axis. | |
""" | |
e_x = np.exp(x) | |
return e_x / e_x.sum(axis=axis, keepdims=True) | |
def calibrate_sentiment_score( | |
sentiment: float, | |
thresh_neg: float, | |
thresh_pos: float, | |
zero: float = 0, | |
) -> float: | |
if thresh_neg != (zero - 1) / 2: | |
alpha_neg = -(3 * zero - 1 - 4 * thresh_neg) / (2 * zero - 2 - 4 * thresh_neg) / 2 | |
if -1 < alpha_neg and alpha_neg < 0: | |
raise ValueError(f"Incorrect value: {thresh_neg=} is too far from -0.5!") | |
if thresh_pos != (zero + 1) / 2: | |
alpha_pos = -(4 * thresh_pos - 1 - 3 * zero) / (2 + 2 * zero - 4 * thresh_pos) / 2 | |
if 0 < alpha_pos and alpha_pos < 1: | |
raise ValueError(f"Incorrect value: {thresh_pos=} is too far from 0.5!") | |
if sentiment < 0: | |
return (2 * zero - 2 - 4 * thresh_neg) * sentiment**2 + (3 * zero - 1 - 4 * thresh_neg) * sentiment + zero | |
elif sentiment > 0: | |
return (2 + 2 * zero - 4 * thresh_pos) * sentiment**2 + (4 * thresh_pos - 1 - 3 * zero) * sentiment + zero | |
return zero | |
def calibrate_sentiment( | |
sentiments: np.ndarray[float], | |
thresh_neg: float, | |
thresh_pos: float, | |
zero: float, | |
) -> np.ndarray[np.float64]: | |
result = np.array( | |
[ | |
calibrate_sentiment_score(sentiment, thresh_neg=thresh_neg, thresh_pos=thresh_pos, zero=zero) | |
for sentiment in sentiments | |
] | |
) | |
return result.astype(np.float64) | |
def scale_value(value, in_min, in_max, out_min, out_max): | |
if in_min <= value <= in_max: | |
scaled_value = (value - in_min) / (in_max - in_min) * (out_max - out_min) + out_min | |
return scaled_value.round(3) | |
else: | |
raise ValueError(f"Input value must be in the range [{in_min}, {in_max}]") | |
def get_sentiment( | |
logits: np.ndarray, | |
thresh_neg: float, | |
thresh_pos: float, | |
zero: float, | |
): | |
probabilities = softmax(logits, axis=1) | |
sentiments = np.matmul(probabilities, np.arange(5)) / 2 - 1 | |
score = calibrate_sentiment( | |
sentiments=sentiments, | |
thresh_neg=thresh_neg, | |
thresh_pos=thresh_pos, | |
zero=zero, | |
)[0] | |
if score < -0.33: | |
return scale_value(score, -1, -0.33, 0, 1), "NEGATIVE" | |
elif score < 0.33: | |
return scale_value(score, -0.33, 0.33, 0, 1), "NEUTRAL" | |
else: | |
return scale_value(score, 0.33, 1, 0, 1), "POSITIVE" |