Spaces:
Running
Running
File size: 14,353 Bytes
185fa42 f5d873e 185fa42 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 |
import streamlit as st
# Must be the first Streamlit command
st.set_page_config(
page_title="02_Chat_Interface", # Use this format for ordering
page_icon="π¬",
layout="wide"
)
# Rest of the imports
import pandas as pd
import logging
import sqlite3
from datetime import datetime
import sys
import os
# Add the parent directory to Python path
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
# Use absolute imports
from database import DatabaseHandler
from data_processor import DataProcessor
from rag import RAGSystem
from query_rewriter import QueryRewriter
from utils import process_single_video
# Set up logging
# Configure logging for stdout only
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
stream=sys.stdout
)
logger = logging.getLogger(__name__)
@st.cache_resource
def init_components():
"""Initialize system components"""
try:
db_handler = DatabaseHandler()
data_processor = DataProcessor()
rag_system = RAGSystem(data_processor)
query_rewriter = QueryRewriter()
return db_handler, data_processor, rag_system, query_rewriter
except Exception as e:
logger.error(f"Error initializing components: {str(e)}")
st.error(f"Error initializing components: {str(e)}")
return None, None, None, None
def init_session_state():
"""Initialize session state variables"""
if 'chat_history' not in st.session_state:
st.session_state.chat_history = []
if 'current_video_id' not in st.session_state:
st.session_state.current_video_id = None
if 'feedback_given' not in st.session_state:
st.session_state.feedback_given = set()
def create_chat_interface(db_handler, rag_system, video_id, index_name, rewrite_method, search_method):
"""Create the chat interface with feedback functionality"""
# Load chat history if video changed
if st.session_state.current_video_id != video_id:
st.session_state.chat_history = []
db_history = db_handler.get_chat_history(video_id)
for chat_id, user_msg, asst_msg, timestamp in db_history:
st.session_state.chat_history.append({
'id': chat_id,
'user': user_msg,
'assistant': asst_msg,
'timestamp': timestamp
})
st.session_state.current_video_id = video_id
# Display chat history
for message in st.session_state.chat_history:
with st.chat_message("user"):
st.markdown(message['user'])
with st.chat_message("assistant"):
st.markdown(message['assistant'])
message_key = f"{message['id']}"
if message_key not in st.session_state.feedback_given:
col1, col2 = st.columns(2)
with col1:
if st.button("π", key=f"like_{message_key}"):
db_handler.add_user_feedback(
video_id=video_id,
chat_id=message['id'],
query=message['user'],
response=message['assistant'],
feedback=1
)
st.session_state.feedback_given.add(message_key)
st.success("Thank you for your positive feedback!")
st.rerun()
with col2:
if st.button("π", key=f"dislike_{message_key}"):
db_handler.add_user_feedback(
video_id=video_id,
chat_id=message['id'],
query=message['user'],
response=message['assistant'],
feedback=-1
)
st.session_state.feedback_given.add(message_key)
st.success("Thank you for your feedback. We'll work to improve.")
st.rerun()
# Chat input
if prompt := st.chat_input("Ask a question about the video..."):
with st.chat_message("user"):
st.markdown(prompt)
with st.chat_message("assistant"):
with st.spinner("Thinking..."):
try:
# Apply query rewriting if selected
rewritten_query = prompt
if rewrite_method == "Chain of Thought":
rewritten_query, _ = rag_system.rewrite_cot(prompt)
st.caption("Rewritten query: " + rewritten_query)
elif rewrite_method == "ReAct":
rewritten_query, _ = rag_system.rewrite_react(prompt)
st.caption("Rewritten query: " + rewritten_query)
# Get response using selected search method
search_method_map = {
"Hybrid": "hybrid",
"Text-only": "text",
"Embedding-only": "embedding"
}
response, _ = rag_system.query(
rewritten_query,
search_method=search_method_map[search_method],
index_name=index_name
)
st.markdown(response)
# Save to database and session state
chat_id = db_handler.add_chat_message(video_id, prompt, response)
st.session_state.chat_history.append({
'id': chat_id,
'user': prompt,
'assistant': response,
'timestamp': datetime.now()
})
# Add feedback buttons for new message
message_key = f"{chat_id}"
col1, col2 = st.columns(2)
with col1:
if st.button("π", key=f"like_{message_key}"):
db_handler.add_user_feedback(
video_id=video_id,
chat_id=chat_id,
query=prompt,
response=response,
feedback=1
)
st.session_state.feedback_given.add(message_key)
st.success("Thank you for your positive feedback!")
st.rerun()
with col2:
if st.button("π", key=f"dislike_{message_key}"):
db_handler.add_user_feedback(
video_id=video_id,
chat_id=chat_id,
query=prompt,
response=response,
feedback=-1
)
st.session_state.feedback_given.add(message_key)
st.success("Thank you for your feedback. We'll work to improve.")
st.rerun()
except Exception as e:
st.error(f"Error generating response: {str(e)}")
logger.error(f"Error in chat interface: {str(e)}")
def get_system_status(db_handler, selected_video_id=None):
"""Get system status information"""
try:
with sqlite3.connect(db_handler.db_path) as conn:
cursor = conn.cursor()
# Get total videos
cursor.execute("SELECT COUNT(*) FROM videos")
total_videos = cursor.fetchone()[0]
# Get total indices
cursor.execute("SELECT COUNT(DISTINCT index_name) FROM elasticsearch_indices")
total_indices = cursor.fetchone()[0]
# Get available embedding models
cursor.execute("SELECT model_name FROM embedding_models")
models = [row[0] for row in cursor.fetchall()]
if selected_video_id:
# Get video details
cursor.execute("""
SELECT v.id, v.title, v.channel_name, v.processed_date,
ei.index_name, em.model_name
FROM videos v
LEFT JOIN elasticsearch_indices ei ON v.id = ei.video_id
LEFT JOIN embedding_models em ON ei.embedding_model_id = em.id
WHERE v.youtube_id = ?
""", (selected_video_id,))
video_details = cursor.fetchall()
else:
video_details = None
return {
"total_videos": total_videos,
"total_indices": total_indices,
"models": models,
"video_details": video_details
}
except Exception as e:
logger.error(f"Error getting system status: {str(e)}")
return None
def display_system_status(status, selected_video_id=None):
"""Display system status in the sidebar"""
if not status:
st.sidebar.error("Unable to fetch system status")
return
st.sidebar.header("System Status")
# Display general stats
col1, col2 = st.sidebar.columns(2)
with col1:
st.metric("Total Videos", status["total_videos"])
with col2:
st.metric("Total Indices", status["total_indices"])
st.sidebar.markdown("**Available Models:**")
for model in status["models"]:
st.sidebar.markdown(f"- {model}")
# Display selected video details
if selected_video_id and status["video_details"]:
st.sidebar.markdown("---")
st.sidebar.markdown("**Selected Video Details:**")
for details in status["video_details"]:
video_id, title, channel, processed_date, index_name, model = details
st.sidebar.markdown(f"""
- **Title:** {title}
- **Channel:** {channel}
- **Processed:** {processed_date}
- **Index:** {index_name or 'Not indexed'}
- **Model:** {model or 'N/A'}
""")
def main():
st.title("Chat Interface π¬")
# Initialize components
components = init_components()
if not components:
st.error("Failed to initialize components. Please check the logs.")
return
db_handler, data_processor, rag_system, query_rewriter = components
# Initialize session state
init_session_state()
# Get system status
system_status = get_system_status(db_handler)
# Video selection
st.sidebar.header("Video Selection")
# Get available videos with indices
with sqlite3.connect(db_handler.db_path) as conn:
query = """
SELECT DISTINCT v.youtube_id, v.title, v.channel_name, v.upload_date,
GROUP_CONCAT(ei.index_name) as indices
FROM videos v
LEFT JOIN elasticsearch_indices ei ON v.id = ei.video_id
GROUP BY v.youtube_id
ORDER BY v.upload_date DESC
"""
df = pd.read_sql_query(query, conn)
if df.empty:
st.info("No videos available. Please process some videos in the Data Ingestion page first.")
display_system_status(system_status)
return
# Display available videos
st.sidebar.markdown(f"**Available Videos:** {len(df)}")
# Channel filter
channels = sorted(df['channel_name'].unique())
selected_channel = st.sidebar.selectbox(
"Filter by Channel",
["All"] + channels,
key="channel_filter"
)
filtered_df = df if selected_channel == "All" else df[df['channel_name'] == selected_channel]
# Video selection
selected_video_id = st.sidebar.selectbox(
"Select a Video",
filtered_df['youtube_id'].tolist(),
format_func=lambda x: filtered_df[filtered_df['youtube_id'] == x]['title'].iloc[0],
key="video_select"
)
if selected_video_id:
# Update system status with selected video
system_status = get_system_status(db_handler, selected_video_id)
display_system_status(system_status, selected_video_id)
# Get the index for the selected video
index_name = db_handler.get_elasticsearch_index_by_youtube_id(selected_video_id)
if not index_name:
st.warning("This video hasn't been indexed yet. You can process it in the Data Ingestion page.")
if st.button("Process Now"):
with st.spinner("Processing video..."):
try:
embedding_model = data_processor.embedding_model.__class__.__name__
index_name = process_single_video(db_handler, data_processor, selected_video_id, embedding_model)
if index_name:
st.success("Video processed successfully!")
st.rerun()
except Exception as e:
st.error(f"Error processing video: {str(e)}")
logger.error(f"Error processing video: {str(e)}")
else:
# Chat settings
st.sidebar.header("Chat Settings")
rewrite_method = st.sidebar.radio(
"Query Rewriting Method",
["None", "Chain of Thought", "ReAct"],
key="rewrite_method"
)
search_method = st.sidebar.radio(
"Search Method",
["Hybrid", "Text-only", "Embedding-only"],
key="search_method"
)
# Create chat interface
create_chat_interface(
db_handler,
rag_system,
selected_video_id,
index_name,
rewrite_method,
search_method
)
# Display system status
display_system_status(system_status, selected_video_id)
if __name__ == "__main__":
main() |