|
|
|
from collections import OrderedDict |
|
import torch |
|
import torch.nn as nn |
|
from functools import partial |
|
import torch.nn.functional as F |
|
import math |
|
from timm.models.vision_transformer import _cfg |
|
from timm.models.registry import register_model |
|
from timm.models.layers import trunc_normal_, DropPath, to_2tuple |
|
|
|
|
|
layer_scale = False |
|
init_value = 1e-6 |
|
global_attn = None |
|
token_indices = None |
|
|
|
|
|
|
|
def easy_gather(x, indices): |
|
|
|
|
|
B, N, C = x.shape |
|
N_new = indices.shape[1] |
|
offset = torch.arange(B, dtype=torch.long, device=x.device).view(B, 1) * N |
|
indices = indices + offset |
|
|
|
out = x.reshape(B * N, C)[indices.view(-1)].reshape(B, N_new, C) |
|
return out |
|
|
|
|
|
|
|
def merge_tokens(x_drop, score): |
|
|
|
|
|
weight = score / torch.sum(score, dim=1, keepdim=True) |
|
x_drop = weight.unsqueeze(-1) * x_drop |
|
return torch.sum(x_drop, dim=1, keepdim=True) |
|
|
|
|
|
class Mlp(nn.Module): |
|
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.): |
|
super().__init__() |
|
out_features = out_features or in_features |
|
hidden_features = hidden_features or in_features |
|
self.fc1 = nn.Linear(in_features, hidden_features) |
|
self.act = act_layer() |
|
self.fc2 = nn.Linear(hidden_features, out_features) |
|
self.drop = nn.Dropout(drop) |
|
|
|
def forward(self, x): |
|
x = self.fc1(x) |
|
x = self.act(x) |
|
x = self.drop(x) |
|
x = self.fc2(x) |
|
x = self.drop(x) |
|
return x |
|
|
|
|
|
class CMlp(nn.Module): |
|
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.): |
|
super().__init__() |
|
out_features = out_features or in_features |
|
hidden_features = hidden_features or in_features |
|
self.fc1 = nn.Conv2d(in_features, hidden_features, 1) |
|
self.act = act_layer() |
|
self.fc2 = nn.Conv2d(hidden_features, out_features, 1) |
|
self.drop = nn.Dropout(drop) |
|
|
|
def forward(self, x): |
|
x = self.fc1(x) |
|
x = self.act(x) |
|
x = self.drop(x) |
|
x = self.fc2(x) |
|
x = self.drop(x) |
|
return x |
|
|
|
|
|
class Attention(nn.Module): |
|
def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0., trade_off=1): |
|
super().__init__() |
|
self.num_heads = num_heads |
|
head_dim = dim // num_heads |
|
|
|
self.scale = qk_scale or head_dim ** -0.5 |
|
|
|
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) |
|
self.attn_drop = nn.Dropout(attn_drop) |
|
self.proj = nn.Linear(dim, dim) |
|
self.proj_drop = nn.Dropout(proj_drop) |
|
|
|
self.trade_off = trade_off |
|
|
|
def forward(self, x): |
|
B, N, C = x.shape |
|
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) |
|
q, k, v = qkv[0], qkv[1], qkv[2] |
|
|
|
attn = (q @ k.transpose(-2, -1)) * self.scale |
|
attn = attn.softmax(dim=-1) |
|
|
|
|
|
global global_attn |
|
tradeoff = self.trade_off |
|
if isinstance(global_attn, int): |
|
global_attn = torch.mean(attn[:, :, 0, 1:], dim=1) |
|
elif global_attn.shape[1] == N - 1: |
|
|
|
cls_attn = torch.mean(attn[:, :, 0, 1:], dim=1) |
|
global_attn = (1 - tradeoff) * global_attn + tradeoff * cls_attn |
|
else: |
|
|
|
|
|
|
|
cls_attn = torch.mean(attn[:, :, 0, 1:-1], dim=1) |
|
if self.training: |
|
temp_attn = (1 - tradeoff) * global_attn[:, :(N - 2)] + tradeoff * cls_attn |
|
global_attn = torch.cat((temp_attn, global_attn[:, (N - 2):]), dim=1) |
|
else: |
|
|
|
global_attn[:, :(N - 2)] = (1 - tradeoff) * global_attn[:, :(N - 2)] + tradeoff * cls_attn |
|
|
|
attn = self.attn_drop(attn) |
|
|
|
x = (attn @ v).transpose(1, 2).reshape(B, N, C) |
|
x = self.proj(x) |
|
x = self.proj_drop(x) |
|
return x |
|
|
|
|
|
class CBlock(nn.Module): |
|
def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0., |
|
drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm): |
|
super().__init__() |
|
self.pos_embed = nn.Conv2d(dim, dim, 3, padding=1, groups=dim) |
|
self.norm1 = nn.BatchNorm2d(dim) |
|
self.conv1 = nn.Conv2d(dim, dim, 1) |
|
self.conv2 = nn.Conv2d(dim, dim, 1) |
|
self.attn = nn.Conv2d(dim, dim, 5, padding=2, groups=dim) |
|
|
|
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() |
|
self.norm2 = nn.BatchNorm2d(dim) |
|
mlp_hidden_dim = int(dim * mlp_ratio) |
|
self.mlp = CMlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) |
|
global layer_scale |
|
self.ls = layer_scale |
|
if self.ls: |
|
global init_value |
|
print(f"Use layer_scale: {layer_scale}, init_values: {init_value}") |
|
self.gamma_1 = nn.Parameter(init_value * torch.ones((1, dim, 1, 1)),requires_grad=True) |
|
self.gamma_2 = nn.Parameter(init_value * torch.ones((1, dim, 1, 1)),requires_grad=True) |
|
|
|
def forward(self, x): |
|
x = x + self.pos_embed(x) |
|
if self.ls: |
|
x = x + self.drop_path(self.gamma_1 * self.conv2(self.attn(self.conv1(self.norm1(x))))) |
|
x = x + self.drop_path(self.gamma_2 * self.mlp(self.norm2(x))) |
|
else: |
|
x = x + self.drop_path(self.conv2(self.attn(self.conv1(self.norm1(x))))) |
|
x = x + self.drop_path(self.mlp(self.norm2(x))) |
|
return x |
|
|
|
|
|
class EvoSABlock(nn.Module): |
|
def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0., |
|
drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, prune_ratio=1, |
|
trade_off=0, downsample=False): |
|
super().__init__() |
|
self.pos_embed = nn.Conv2d(dim, dim, 3, padding=1, groups=dim) |
|
self.norm1 = norm_layer(dim) |
|
self.attn = Attention( |
|
dim, |
|
num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, |
|
attn_drop=attn_drop, proj_drop=drop, trade_off=trade_off) |
|
|
|
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() |
|
self.norm2 = norm_layer(dim) |
|
mlp_hidden_dim = int(dim * mlp_ratio) |
|
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) |
|
self.prune_ratio = prune_ratio |
|
self.downsample = downsample |
|
if downsample: |
|
self.avgpool = nn.AvgPool2d(kernel_size=2, stride=2) |
|
global layer_scale |
|
self.ls = layer_scale |
|
if self.ls: |
|
global init_value |
|
print(f"Use layer_scale: {layer_scale}, init_values: {init_value}") |
|
self.gamma_1 = nn.Parameter(init_value * torch.ones((dim)),requires_grad=True) |
|
self.gamma_2 = nn.Parameter(init_value * torch.ones((dim)),requires_grad=True) |
|
if self.prune_ratio != 1: |
|
self.gamma_3 = nn.Parameter(init_value * torch.ones((dim)),requires_grad=True) |
|
|
|
def forward(self, cls_token, x): |
|
x = x + self.pos_embed(x) |
|
B, C, H, W = x.shape |
|
x = x.flatten(2).transpose(1, 2) |
|
|
|
if self.prune_ratio == 1: |
|
x = torch.cat([cls_token, x], dim=1) |
|
if self.ls: |
|
x = x + self.drop_path(self.gamma_1 * self.attn(self.norm1(x))) |
|
x = x + self.drop_path(self.gamma_2 * self.mlp(self.norm2(x))) |
|
else: |
|
x = x + self.drop_path(self.attn(self.norm1(x))) |
|
x = x + self.drop_path(self.mlp(self.norm2(x))) |
|
cls_token, x = x[:, :1], x[:, 1:] |
|
x = x.transpose(1, 2).reshape(B, C, H, W) |
|
return cls_token, x |
|
else: |
|
global global_attn, token_indices |
|
|
|
N = x.shape[1] |
|
N_ = int(N * self.prune_ratio) |
|
|
|
indices = torch.argsort(global_attn, dim=1, descending=True) |
|
|
|
|
|
|
|
x_ga_ti = torch.cat((x, global_attn.unsqueeze(-1), token_indices.unsqueeze(-1)), dim=-1) |
|
x_ga_ti = easy_gather(x_ga_ti, indices) |
|
x_sorted, global_attn, token_indices = x_ga_ti[:, :, :-2], x_ga_ti[:, :, -2], x_ga_ti[:, :, -1] |
|
|
|
|
|
x_info = x_sorted[:, :N_] |
|
|
|
x_drop = x_sorted[:, N_:] |
|
score = global_attn[:, N_:] |
|
|
|
rep_token = merge_tokens(x_drop, score) |
|
|
|
x = torch.cat((cls_token, x_info, rep_token), dim=1) |
|
|
|
if self.ls: |
|
|
|
fast_update = 0 |
|
tmp_x = self.attn(self.norm1(x)) |
|
fast_update = fast_update + tmp_x[:, -1:] |
|
x = x + self.drop_path(self.gamma_1 * tmp_x) |
|
tmp_x = self.mlp(self.norm2(x)) |
|
fast_update = fast_update + tmp_x[:, -1:] |
|
x = x + self.drop_path(self.gamma_2 * tmp_x) |
|
|
|
x_drop = x_drop + self.gamma_3 * fast_update.expand(-1, N - N_, -1) |
|
else: |
|
|
|
fast_update = 0 |
|
tmp_x = self.attn(self.norm1(x)) |
|
fast_update = fast_update + tmp_x[:, -1:] |
|
x = x + self.drop_path(tmp_x) |
|
tmp_x = self.mlp(self.norm2(x)) |
|
fast_update = fast_update + tmp_x[:, -1:] |
|
x = x + self.drop_path(tmp_x) |
|
|
|
x_drop = x_drop + fast_update.expand(-1, N - N_, -1) |
|
|
|
cls_token, x = x[:, :1, :], x[:, 1:-1, :] |
|
if self.training: |
|
x_sorted = torch.cat((x, x_drop), dim=1) |
|
else: |
|
x_sorted[:, N_:] = x_drop |
|
x_sorted[:, :N_] = x |
|
|
|
|
|
|
|
old_global_scale = torch.sum(global_attn, dim=1, keepdim=True) |
|
|
|
indices = torch.argsort(token_indices, dim=1) |
|
x_ga_ti = torch.cat((x_sorted, global_attn.unsqueeze(-1), token_indices.unsqueeze(-1)), dim=-1) |
|
x_ga_ti = easy_gather(x_ga_ti, indices) |
|
x_patch, global_attn, token_indices = x_ga_ti[:, :, :-2], x_ga_ti[:, :, -2], x_ga_ti[:, :, -1] |
|
x_patch = x_patch.transpose(1, 2).reshape(B, C, H, W) |
|
|
|
if self.downsample: |
|
|
|
global_attn = global_attn.reshape(B, 1, H, W) |
|
global_attn = self.avgpool(global_attn).view(B, -1) |
|
|
|
new_global_scale = torch.sum(global_attn, dim=1, keepdim=True) |
|
scale = old_global_scale / new_global_scale |
|
global_attn = global_attn * scale |
|
|
|
return cls_token, x_patch |
|
|
|
|
|
class PatchEmbed(nn.Module): |
|
""" Image to Patch Embedding |
|
""" |
|
def __init__(self, patch_size=16, in_chans=3, embed_dim=768): |
|
super().__init__() |
|
self.norm = nn.LayerNorm(embed_dim) |
|
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size) |
|
|
|
def forward(self, x): |
|
x = self.proj(x) |
|
B, C, H, W = x.shape |
|
x = x.flatten(2).transpose(1, 2) |
|
x = self.norm(x) |
|
x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous() |
|
return x |
|
|
|
|
|
class head_embedding(nn.Module): |
|
def __init__(self, in_channels, out_channels): |
|
super(head_embedding, self).__init__() |
|
self.proj = nn.Sequential( |
|
nn.Conv2d(in_channels, out_channels // 2, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1)), |
|
nn.BatchNorm2d(out_channels // 2), |
|
nn.GELU(), |
|
nn.Conv2d(out_channels // 2, out_channels, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1)), |
|
nn.BatchNorm2d(out_channels), |
|
) |
|
|
|
def forward(self, x): |
|
x = self.proj(x) |
|
return x |
|
|
|
|
|
class middle_embedding(nn.Module): |
|
def __init__(self, in_channels, out_channels): |
|
super(middle_embedding, self).__init__() |
|
|
|
self.proj = nn.Sequential( |
|
nn.Conv2d(in_channels, out_channels, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1)), |
|
nn.BatchNorm2d(out_channels), |
|
) |
|
|
|
def forward(self, x): |
|
x = self.proj(x) |
|
return x |
|
|
|
|
|
class UniFormer_Light(nn.Module): |
|
""" Vision Transformer |
|
A PyTorch impl of : `An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale` - |
|
https://arxiv.org/abs/2010.11929 |
|
""" |
|
def __init__(self, depth=[3, 4, 8, 3], in_chans=3, num_classes=1000, embed_dim=[64, 128, 320, 512], |
|
head_dim=64, mlp_ratio=[4., 4., 4., 4.], qkv_bias=True, qk_scale=None, representation_size=None, |
|
drop_rate=0., attn_drop_rate=0., drop_path_rate=0., norm_layer=None, conv_stem=False, |
|
prune_ratio=[[], [], [1, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5], [0.5, 0.5, 0.5]], |
|
trade_off=[[], [], [1, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5], [0.5, 0.5, 0.5]]): |
|
""" |
|
Args: |
|
img_size (int, tuple): input image size |
|
patch_size (int, tuple): patch size |
|
in_chans (int): number of input channels |
|
num_classes (int): number of classes for classification head |
|
embed_dim (int): embedding dimension |
|
depth (int): depth of transformer |
|
head_dim (int): head dimension |
|
mlp_ratio (list): ratio of mlp hidden dim to embedding dim |
|
qkv_bias (bool): enable bias for qkv if True |
|
qk_scale (float): override default qk scale of head_dim ** -0.5 if set |
|
representation_size (Optional[int]): enable and set representation layer (pre-logits) to this value if set |
|
drop_rate (float): dropout rate |
|
attn_drop_rate (float): attention dropout rate |
|
drop_path_rate (float): stochastic depth rate |
|
norm_layer: (nn.Module): normalization layer |
|
""" |
|
super().__init__() |
|
self.num_classes = num_classes |
|
self.num_features = self.embed_dim = embed_dim |
|
norm_layer = norm_layer or partial(nn.LayerNorm, eps=1e-6) |
|
if conv_stem: |
|
self.patch_embed1 = head_embedding(in_channels=in_chans, out_channels=embed_dim[0]) |
|
self.patch_embed2 = PatchEmbed( |
|
patch_size=2, in_chans=embed_dim[0], embed_dim=embed_dim[1]) |
|
self.patch_embed3 = PatchEmbed( |
|
patch_size=2, in_chans=embed_dim[1], embed_dim=embed_dim[2]) |
|
self.patch_embed4 = PatchEmbed( |
|
patch_size=2, in_chans=embed_dim[2], embed_dim=embed_dim[3]) |
|
else: |
|
self.patch_embed1 = PatchEmbed( |
|
patch_size=4, in_chans=in_chans, embed_dim=embed_dim[0]) |
|
self.patch_embed2 = PatchEmbed( |
|
patch_size=2, in_chans=embed_dim[0], embed_dim=embed_dim[1]) |
|
self.patch_embed3 = PatchEmbed( |
|
patch_size=2, in_chans=embed_dim[1], embed_dim=embed_dim[2]) |
|
self.patch_embed4 = PatchEmbed( |
|
patch_size=2, in_chans=embed_dim[2], embed_dim=embed_dim[3]) |
|
|
|
|
|
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim[2])) |
|
self.cls_upsample = nn.Linear(embed_dim[2], embed_dim[3]) |
|
|
|
self.pos_drop = nn.Dropout(p=drop_rate) |
|
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depth))] |
|
num_heads = [dim // head_dim for dim in embed_dim] |
|
self.blocks1 = nn.ModuleList([ |
|
CBlock( |
|
dim=embed_dim[0], num_heads=num_heads[0], mlp_ratio=mlp_ratio[0], qkv_bias=qkv_bias, qk_scale=qk_scale, |
|
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer) |
|
for i in range(depth[0])]) |
|
self.blocks2 = nn.ModuleList([ |
|
CBlock( |
|
dim=embed_dim[1], num_heads=num_heads[1], mlp_ratio=mlp_ratio[1], qkv_bias=qkv_bias, qk_scale=qk_scale, |
|
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i+depth[0]], norm_layer=norm_layer) |
|
for i in range(depth[1])]) |
|
self.blocks3 = nn.ModuleList([ |
|
EvoSABlock( |
|
dim=embed_dim[2], num_heads=num_heads[2], mlp_ratio=mlp_ratio[2], qkv_bias=qkv_bias, qk_scale=qk_scale, |
|
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i+depth[0]+depth[1]], norm_layer=norm_layer, |
|
prune_ratio=prune_ratio[2][i], trade_off=trade_off[2][i], |
|
downsample=True if i == depth[2] - 1 else False) |
|
for i in range(depth[2])]) |
|
self.blocks4 = nn.ModuleList([ |
|
EvoSABlock( |
|
dim=embed_dim[3], num_heads=num_heads[3], mlp_ratio=mlp_ratio[3], qkv_bias=qkv_bias, qk_scale=qk_scale, |
|
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i+depth[0]+depth[1]+depth[2]], norm_layer=norm_layer, |
|
prune_ratio=prune_ratio[3][i], trade_off=trade_off[3][i]) |
|
for i in range(depth[3])]) |
|
self.norm = nn.BatchNorm2d(embed_dim[-1]) |
|
self.norm_cls = nn.LayerNorm(embed_dim[-1]) |
|
|
|
|
|
if representation_size: |
|
self.num_features = representation_size |
|
self.pre_logits = nn.Sequential(OrderedDict([ |
|
('fc', nn.Linear(embed_dim, representation_size)), |
|
('act', nn.Tanh()) |
|
])) |
|
else: |
|
self.pre_logits = nn.Identity() |
|
|
|
|
|
self.head = nn.Linear(embed_dim[-1], num_classes) if num_classes > 0 else nn.Identity() |
|
self.head_cls = nn.Linear(embed_dim[-1], num_classes) if num_classes > 0 else nn.Identity() |
|
|
|
self.apply(self._init_weights) |
|
|
|
def _init_weights(self, m): |
|
if isinstance(m, nn.Linear): |
|
trunc_normal_(m.weight, std=.02) |
|
if isinstance(m, nn.Linear) and m.bias is not None: |
|
nn.init.constant_(m.bias, 0) |
|
elif isinstance(m, nn.LayerNorm): |
|
nn.init.constant_(m.bias, 0) |
|
nn.init.constant_(m.weight, 1.0) |
|
|
|
@torch.jit.ignore |
|
def no_weight_decay(self): |
|
return {'pos_embed', 'cls_token'} |
|
|
|
def get_classifier(self): |
|
return self.head |
|
|
|
def reset_classifier(self, num_classes, global_pool=''): |
|
self.num_classes = num_classes |
|
self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity() |
|
|
|
def forward_features(self, x): |
|
B = x.shape[0] |
|
x = self.patch_embed1(x) |
|
x = self.pos_drop(x) |
|
for blk in self.blocks1: |
|
x = blk(x) |
|
x = self.patch_embed2(x) |
|
for blk in self.blocks2: |
|
x = blk(x) |
|
x = self.patch_embed3(x) |
|
|
|
cls_token = self.cls_token.expand(x.shape[0], -1, -1) |
|
global global_attn, token_indices |
|
global_attn = 0 |
|
token_indices = torch.arange(x.shape[2] * x.shape[3], dtype=torch.long, device=x.device).unsqueeze(0) |
|
token_indices = token_indices.expand(x.shape[0], -1) |
|
for blk in self.blocks3: |
|
cls_token, x = blk(cls_token, x) |
|
|
|
cls_token = self.cls_upsample(cls_token) |
|
x = self.patch_embed4(x) |
|
|
|
token_indices = torch.arange(x.shape[2] * x.shape[3], dtype=torch.long, device=x.device).unsqueeze(0) |
|
token_indices = token_indices.expand(x.shape[0], -1) |
|
for blk in self.blocks4: |
|
cls_token, x = blk(cls_token, x) |
|
if self.training: |
|
|
|
cls_token = self.norm_cls(cls_token) |
|
x = self.norm(x) |
|
x = self.pre_logits(x) |
|
return cls_token, x |
|
|
|
def forward(self, x): |
|
cls_token, x = self.forward_features(x) |
|
x = x.flatten(2).mean(-1) |
|
if self.training: |
|
x = self.head(x), self.head_cls(cls_token.squeeze(1)) |
|
else: |
|
x = self.head(x) |
|
return x |
|
|
|
|
|
def uniformer_xxs_image(**kwargs): |
|
model = UniFormer_Light( |
|
depth=[2, 5, 8, 2], conv_stem=True, |
|
prune_ratio=[[], [], [1, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5], [0.5, 0.5]], |
|
trade_off=[[], [], [1, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5], [0.5, 0.5]], |
|
embed_dim=[56, 112, 224, 448], head_dim=28, mlp_ratio=[3, 3, 3, 3], qkv_bias=True, |
|
**kwargs) |
|
model.default_cfg = _cfg() |
|
return model |
|
|
|
|
|
def uniformer_xs_image(**kwargs): |
|
model = UniFormer_Light( |
|
depth=[3, 5, 9, 3], conv_stem=True, |
|
prune_ratio=[[], [], [1, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5], [0.5, 0.5, 0.5]], |
|
trade_off=[[], [], [1, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5], [0.5, 0.5, 0.5]], |
|
embed_dim=[64, 128, 256, 512], head_dim=32, mlp_ratio=[3, 3, 3, 3], qkv_bias=True, |
|
**kwargs) |
|
model.default_cfg = _cfg() |
|
return model |
|
|
|
|
|
if __name__ == '__main__': |
|
import time |
|
from fvcore.nn import FlopCountAnalysis |
|
from fvcore.nn import flop_count_table |
|
import numpy as np |
|
|
|
seed = 4217 |
|
np.random.seed(seed) |
|
torch.manual_seed(seed) |
|
torch.cuda.manual_seed(seed) |
|
torch.cuda.manual_seed_all(seed) |
|
|
|
model = uniformer_xxs_image() |
|
|
|
|
|
flops = FlopCountAnalysis(model, torch.rand(1, 3, 160, 160)) |
|
s = time.time() |
|
print(flop_count_table(flops, max_depth=1)) |
|
print(time.time()-s) |