Upload 3 files
Browse files- transforms.py +443 -0
- uniformer_light_image.py +535 -0
- uniformer_light_video.py +595 -0
transforms.py
ADDED
@@ -0,0 +1,443 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torchvision
|
2 |
+
import random
|
3 |
+
from PIL import Image, ImageOps
|
4 |
+
import numpy as np
|
5 |
+
import numbers
|
6 |
+
import math
|
7 |
+
import torch
|
8 |
+
|
9 |
+
|
10 |
+
class GroupRandomCrop(object):
|
11 |
+
def __init__(self, size):
|
12 |
+
if isinstance(size, numbers.Number):
|
13 |
+
self.size = (int(size), int(size))
|
14 |
+
else:
|
15 |
+
self.size = size
|
16 |
+
|
17 |
+
def __call__(self, img_group):
|
18 |
+
|
19 |
+
w, h = img_group[0].size
|
20 |
+
th, tw = self.size
|
21 |
+
|
22 |
+
out_images = list()
|
23 |
+
|
24 |
+
x1 = random.randint(0, w - tw)
|
25 |
+
y1 = random.randint(0, h - th)
|
26 |
+
|
27 |
+
for img in img_group:
|
28 |
+
assert(img.size[0] == w and img.size[1] == h)
|
29 |
+
if w == tw and h == th:
|
30 |
+
out_images.append(img)
|
31 |
+
else:
|
32 |
+
out_images.append(img.crop((x1, y1, x1 + tw, y1 + th)))
|
33 |
+
|
34 |
+
return out_images
|
35 |
+
|
36 |
+
|
37 |
+
class MultiGroupRandomCrop(object):
|
38 |
+
def __init__(self, size, groups=1):
|
39 |
+
if isinstance(size, numbers.Number):
|
40 |
+
self.size = (int(size), int(size))
|
41 |
+
else:
|
42 |
+
self.size = size
|
43 |
+
self.groups = groups
|
44 |
+
|
45 |
+
def __call__(self, img_group):
|
46 |
+
|
47 |
+
w, h = img_group[0].size
|
48 |
+
th, tw = self.size
|
49 |
+
|
50 |
+
out_images = list()
|
51 |
+
|
52 |
+
for i in range(self.groups):
|
53 |
+
x1 = random.randint(0, w - tw)
|
54 |
+
y1 = random.randint(0, h - th)
|
55 |
+
|
56 |
+
for img in img_group:
|
57 |
+
assert(img.size[0] == w and img.size[1] == h)
|
58 |
+
if w == tw and h == th:
|
59 |
+
out_images.append(img)
|
60 |
+
else:
|
61 |
+
out_images.append(img.crop((x1, y1, x1 + tw, y1 + th)))
|
62 |
+
|
63 |
+
return out_images
|
64 |
+
|
65 |
+
|
66 |
+
class GroupCenterCrop(object):
|
67 |
+
def __init__(self, size):
|
68 |
+
self.worker = torchvision.transforms.CenterCrop(size)
|
69 |
+
|
70 |
+
def __call__(self, img_group):
|
71 |
+
return [self.worker(img) for img in img_group]
|
72 |
+
|
73 |
+
|
74 |
+
class GroupRandomHorizontalFlip(object):
|
75 |
+
"""Randomly horizontally flips the given PIL.Image with a probability of 0.5
|
76 |
+
"""
|
77 |
+
|
78 |
+
def __init__(self, is_flow=False):
|
79 |
+
self.is_flow = is_flow
|
80 |
+
|
81 |
+
def __call__(self, img_group, is_flow=False):
|
82 |
+
v = random.random()
|
83 |
+
if v < 0.5:
|
84 |
+
ret = [img.transpose(Image.FLIP_LEFT_RIGHT) for img in img_group]
|
85 |
+
if self.is_flow:
|
86 |
+
for i in range(0, len(ret), 2):
|
87 |
+
# invert flow pixel values when flipping
|
88 |
+
ret[i] = ImageOps.invert(ret[i])
|
89 |
+
return ret
|
90 |
+
else:
|
91 |
+
return img_group
|
92 |
+
|
93 |
+
|
94 |
+
class GroupNormalize(object):
|
95 |
+
def __init__(self, mean, std):
|
96 |
+
self.mean = mean
|
97 |
+
self.std = std
|
98 |
+
|
99 |
+
def __call__(self, tensor):
|
100 |
+
rep_mean = self.mean * (tensor.size()[0] // len(self.mean))
|
101 |
+
rep_std = self.std * (tensor.size()[0] // len(self.std))
|
102 |
+
|
103 |
+
# TODO: make efficient
|
104 |
+
for t, m, s in zip(tensor, rep_mean, rep_std):
|
105 |
+
t.sub_(m).div_(s)
|
106 |
+
|
107 |
+
return tensor
|
108 |
+
|
109 |
+
|
110 |
+
class GroupScale(object):
|
111 |
+
""" Rescales the input PIL.Image to the given 'size'.
|
112 |
+
'size' will be the size of the smaller edge.
|
113 |
+
For example, if height > width, then image will be
|
114 |
+
rescaled to (size * height / width, size)
|
115 |
+
size: size of the smaller edge
|
116 |
+
interpolation: Default: PIL.Image.BILINEAR
|
117 |
+
"""
|
118 |
+
|
119 |
+
def __init__(self, size, interpolation=Image.BILINEAR):
|
120 |
+
self.worker = torchvision.transforms.Resize(size, interpolation)
|
121 |
+
|
122 |
+
def __call__(self, img_group):
|
123 |
+
return [self.worker(img) for img in img_group]
|
124 |
+
|
125 |
+
|
126 |
+
class GroupOverSample(object):
|
127 |
+
def __init__(self, crop_size, scale_size=None, flip=True):
|
128 |
+
self.crop_size = crop_size if not isinstance(
|
129 |
+
crop_size, int) else (crop_size, crop_size)
|
130 |
+
|
131 |
+
if scale_size is not None:
|
132 |
+
self.scale_worker = GroupScale(scale_size)
|
133 |
+
else:
|
134 |
+
self.scale_worker = None
|
135 |
+
self.flip = flip
|
136 |
+
|
137 |
+
def __call__(self, img_group):
|
138 |
+
|
139 |
+
if self.scale_worker is not None:
|
140 |
+
img_group = self.scale_worker(img_group)
|
141 |
+
|
142 |
+
image_w, image_h = img_group[0].size
|
143 |
+
crop_w, crop_h = self.crop_size
|
144 |
+
|
145 |
+
offsets = GroupMultiScaleCrop.fill_fix_offset(
|
146 |
+
False, image_w, image_h, crop_w, crop_h)
|
147 |
+
oversample_group = list()
|
148 |
+
for o_w, o_h in offsets:
|
149 |
+
normal_group = list()
|
150 |
+
flip_group = list()
|
151 |
+
for i, img in enumerate(img_group):
|
152 |
+
crop = img.crop((o_w, o_h, o_w + crop_w, o_h + crop_h))
|
153 |
+
normal_group.append(crop)
|
154 |
+
flip_crop = crop.copy().transpose(Image.FLIP_LEFT_RIGHT)
|
155 |
+
|
156 |
+
if img.mode == 'L' and i % 2 == 0:
|
157 |
+
flip_group.append(ImageOps.invert(flip_crop))
|
158 |
+
else:
|
159 |
+
flip_group.append(flip_crop)
|
160 |
+
|
161 |
+
oversample_group.extend(normal_group)
|
162 |
+
if self.flip:
|
163 |
+
oversample_group.extend(flip_group)
|
164 |
+
return oversample_group
|
165 |
+
|
166 |
+
|
167 |
+
class GroupFullResSample(object):
|
168 |
+
def __init__(self, crop_size, scale_size=None, flip=True):
|
169 |
+
self.crop_size = crop_size if not isinstance(
|
170 |
+
crop_size, int) else (crop_size, crop_size)
|
171 |
+
|
172 |
+
if scale_size is not None:
|
173 |
+
self.scale_worker = GroupScale(scale_size)
|
174 |
+
else:
|
175 |
+
self.scale_worker = None
|
176 |
+
self.flip = flip
|
177 |
+
|
178 |
+
def __call__(self, img_group):
|
179 |
+
|
180 |
+
if self.scale_worker is not None:
|
181 |
+
img_group = self.scale_worker(img_group)
|
182 |
+
|
183 |
+
image_w, image_h = img_group[0].size
|
184 |
+
crop_w, crop_h = self.crop_size
|
185 |
+
|
186 |
+
w_step = (image_w - crop_w) // 4
|
187 |
+
h_step = (image_h - crop_h) // 4
|
188 |
+
|
189 |
+
offsets = list()
|
190 |
+
offsets.append((0 * w_step, 2 * h_step)) # left
|
191 |
+
offsets.append((4 * w_step, 2 * h_step)) # right
|
192 |
+
offsets.append((2 * w_step, 2 * h_step)) # center
|
193 |
+
|
194 |
+
oversample_group = list()
|
195 |
+
for o_w, o_h in offsets:
|
196 |
+
normal_group = list()
|
197 |
+
flip_group = list()
|
198 |
+
for i, img in enumerate(img_group):
|
199 |
+
crop = img.crop((o_w, o_h, o_w + crop_w, o_h + crop_h))
|
200 |
+
normal_group.append(crop)
|
201 |
+
if self.flip:
|
202 |
+
flip_crop = crop.copy().transpose(Image.FLIP_LEFT_RIGHT)
|
203 |
+
|
204 |
+
if img.mode == 'L' and i % 2 == 0:
|
205 |
+
flip_group.append(ImageOps.invert(flip_crop))
|
206 |
+
else:
|
207 |
+
flip_group.append(flip_crop)
|
208 |
+
|
209 |
+
oversample_group.extend(normal_group)
|
210 |
+
oversample_group.extend(flip_group)
|
211 |
+
return oversample_group
|
212 |
+
|
213 |
+
|
214 |
+
class GroupMultiScaleCrop(object):
|
215 |
+
|
216 |
+
def __init__(self, input_size, scales=None, max_distort=1,
|
217 |
+
fix_crop=True, more_fix_crop=True):
|
218 |
+
self.scales = scales if scales is not None else [1, .875, .75, .66]
|
219 |
+
self.max_distort = max_distort
|
220 |
+
self.fix_crop = fix_crop
|
221 |
+
self.more_fix_crop = more_fix_crop
|
222 |
+
self.input_size = input_size if not isinstance(input_size, int) else [
|
223 |
+
input_size, input_size]
|
224 |
+
self.interpolation = Image.BILINEAR
|
225 |
+
|
226 |
+
def __call__(self, img_group):
|
227 |
+
|
228 |
+
im_size = img_group[0].size
|
229 |
+
|
230 |
+
crop_w, crop_h, offset_w, offset_h = self._sample_crop_size(im_size)
|
231 |
+
crop_img_group = [
|
232 |
+
img.crop(
|
233 |
+
(offset_w,
|
234 |
+
offset_h,
|
235 |
+
offset_w +
|
236 |
+
crop_w,
|
237 |
+
offset_h +
|
238 |
+
crop_h)) for img in img_group]
|
239 |
+
ret_img_group = [img.resize((self.input_size[0], self.input_size[1]), self.interpolation)
|
240 |
+
for img in crop_img_group]
|
241 |
+
return ret_img_group
|
242 |
+
|
243 |
+
def _sample_crop_size(self, im_size):
|
244 |
+
image_w, image_h = im_size[0], im_size[1]
|
245 |
+
|
246 |
+
# find a crop size
|
247 |
+
base_size = min(image_w, image_h)
|
248 |
+
crop_sizes = [int(base_size * x) for x in self.scales]
|
249 |
+
crop_h = [
|
250 |
+
self.input_size[1] if abs(
|
251 |
+
x - self.input_size[1]) < 3 else x for x in crop_sizes]
|
252 |
+
crop_w = [
|
253 |
+
self.input_size[0] if abs(
|
254 |
+
x - self.input_size[0]) < 3 else x for x in crop_sizes]
|
255 |
+
|
256 |
+
pairs = []
|
257 |
+
for i, h in enumerate(crop_h):
|
258 |
+
for j, w in enumerate(crop_w):
|
259 |
+
if abs(i - j) <= self.max_distort:
|
260 |
+
pairs.append((w, h))
|
261 |
+
|
262 |
+
crop_pair = random.choice(pairs)
|
263 |
+
if not self.fix_crop:
|
264 |
+
w_offset = random.randint(0, image_w - crop_pair[0])
|
265 |
+
h_offset = random.randint(0, image_h - crop_pair[1])
|
266 |
+
else:
|
267 |
+
w_offset, h_offset = self._sample_fix_offset(
|
268 |
+
image_w, image_h, crop_pair[0], crop_pair[1])
|
269 |
+
|
270 |
+
return crop_pair[0], crop_pair[1], w_offset, h_offset
|
271 |
+
|
272 |
+
def _sample_fix_offset(self, image_w, image_h, crop_w, crop_h):
|
273 |
+
offsets = self.fill_fix_offset(
|
274 |
+
self.more_fix_crop, image_w, image_h, crop_w, crop_h)
|
275 |
+
return random.choice(offsets)
|
276 |
+
|
277 |
+
@staticmethod
|
278 |
+
def fill_fix_offset(more_fix_crop, image_w, image_h, crop_w, crop_h):
|
279 |
+
w_step = (image_w - crop_w) // 4
|
280 |
+
h_step = (image_h - crop_h) // 4
|
281 |
+
|
282 |
+
ret = list()
|
283 |
+
ret.append((0, 0)) # upper left
|
284 |
+
ret.append((4 * w_step, 0)) # upper right
|
285 |
+
ret.append((0, 4 * h_step)) # lower left
|
286 |
+
ret.append((4 * w_step, 4 * h_step)) # lower right
|
287 |
+
ret.append((2 * w_step, 2 * h_step)) # center
|
288 |
+
|
289 |
+
if more_fix_crop:
|
290 |
+
ret.append((0, 2 * h_step)) # center left
|
291 |
+
ret.append((4 * w_step, 2 * h_step)) # center right
|
292 |
+
ret.append((2 * w_step, 4 * h_step)) # lower center
|
293 |
+
ret.append((2 * w_step, 0 * h_step)) # upper center
|
294 |
+
|
295 |
+
ret.append((1 * w_step, 1 * h_step)) # upper left quarter
|
296 |
+
ret.append((3 * w_step, 1 * h_step)) # upper right quarter
|
297 |
+
ret.append((1 * w_step, 3 * h_step)) # lower left quarter
|
298 |
+
ret.append((3 * w_step, 3 * h_step)) # lower righ quarter
|
299 |
+
|
300 |
+
return ret
|
301 |
+
|
302 |
+
|
303 |
+
class GroupRandomSizedCrop(object):
|
304 |
+
"""Random crop the given PIL.Image to a random size of (0.08 to 1.0) of the original size
|
305 |
+
and and a random aspect ratio of 3/4 to 4/3 of the original aspect ratio
|
306 |
+
This is popularly used to train the Inception networks
|
307 |
+
size: size of the smaller edge
|
308 |
+
interpolation: Default: PIL.Image.BILINEAR
|
309 |
+
"""
|
310 |
+
|
311 |
+
def __init__(self, size, interpolation=Image.BILINEAR):
|
312 |
+
self.size = size
|
313 |
+
self.interpolation = interpolation
|
314 |
+
|
315 |
+
def __call__(self, img_group):
|
316 |
+
for attempt in range(10):
|
317 |
+
area = img_group[0].size[0] * img_group[0].size[1]
|
318 |
+
target_area = random.uniform(0.08, 1.0) * area
|
319 |
+
aspect_ratio = random.uniform(3. / 4, 4. / 3)
|
320 |
+
|
321 |
+
w = int(round(math.sqrt(target_area * aspect_ratio)))
|
322 |
+
h = int(round(math.sqrt(target_area / aspect_ratio)))
|
323 |
+
|
324 |
+
if random.random() < 0.5:
|
325 |
+
w, h = h, w
|
326 |
+
|
327 |
+
if w <= img_group[0].size[0] and h <= img_group[0].size[1]:
|
328 |
+
x1 = random.randint(0, img_group[0].size[0] - w)
|
329 |
+
y1 = random.randint(0, img_group[0].size[1] - h)
|
330 |
+
found = True
|
331 |
+
break
|
332 |
+
else:
|
333 |
+
found = False
|
334 |
+
x1 = 0
|
335 |
+
y1 = 0
|
336 |
+
|
337 |
+
if found:
|
338 |
+
out_group = list()
|
339 |
+
for img in img_group:
|
340 |
+
img = img.crop((x1, y1, x1 + w, y1 + h))
|
341 |
+
assert(img.size == (w, h))
|
342 |
+
out_group.append(
|
343 |
+
img.resize(
|
344 |
+
(self.size, self.size), self.interpolation))
|
345 |
+
return out_group
|
346 |
+
else:
|
347 |
+
# Fallback
|
348 |
+
scale = GroupScale(self.size, interpolation=self.interpolation)
|
349 |
+
crop = GroupRandomCrop(self.size)
|
350 |
+
return crop(scale(img_group))
|
351 |
+
|
352 |
+
|
353 |
+
class ConvertDataFormat(object):
|
354 |
+
def __init__(self, model_type):
|
355 |
+
self.model_type = model_type
|
356 |
+
|
357 |
+
def __call__(self, images):
|
358 |
+
if self.model_type == '2D':
|
359 |
+
return images
|
360 |
+
tc, h, w = images.size()
|
361 |
+
t = tc // 3
|
362 |
+
images = images.view(t, 3, h, w)
|
363 |
+
images = images.permute(1, 0, 2, 3)
|
364 |
+
return images
|
365 |
+
|
366 |
+
|
367 |
+
class Stack(object):
|
368 |
+
|
369 |
+
def __init__(self, roll=False):
|
370 |
+
self.roll = roll
|
371 |
+
|
372 |
+
def __call__(self, img_group):
|
373 |
+
if img_group[0].mode == 'L':
|
374 |
+
return np.concatenate([np.expand_dims(x, 2)
|
375 |
+
for x in img_group], axis=2)
|
376 |
+
elif img_group[0].mode == 'RGB':
|
377 |
+
if self.roll:
|
378 |
+
return np.concatenate([np.array(x)[:, :, ::-1]
|
379 |
+
for x in img_group], axis=2)
|
380 |
+
else:
|
381 |
+
#print(np.concatenate(img_group, axis=2).shape)
|
382 |
+
# print(img_group[0].shape)
|
383 |
+
return np.concatenate(img_group, axis=2)
|
384 |
+
|
385 |
+
|
386 |
+
class ToTorchFormatTensor(object):
|
387 |
+
""" Converts a PIL.Image (RGB) or numpy.ndarray (H x W x C) in the range [0, 255]
|
388 |
+
to a torch.FloatTensor of shape (C x H x W) in the range [0.0, 1.0] """
|
389 |
+
|
390 |
+
def __init__(self, div=True):
|
391 |
+
self.div = div
|
392 |
+
|
393 |
+
def __call__(self, pic):
|
394 |
+
if isinstance(pic, np.ndarray):
|
395 |
+
# handle numpy array
|
396 |
+
img = torch.from_numpy(pic).permute(2, 0, 1).contiguous()
|
397 |
+
else:
|
398 |
+
# handle PIL Image
|
399 |
+
img = torch.ByteTensor(
|
400 |
+
torch.ByteStorage.from_buffer(
|
401 |
+
pic.tobytes()))
|
402 |
+
img = img.view(pic.size[1], pic.size[0], len(pic.mode))
|
403 |
+
# put it from HWC to CHW format
|
404 |
+
# yikes, this transpose takes 80% of the loading time/CPU
|
405 |
+
img = img.transpose(0, 1).transpose(0, 2).contiguous()
|
406 |
+
return img.float().div(255) if self.div else img.float()
|
407 |
+
|
408 |
+
|
409 |
+
class IdentityTransform(object):
|
410 |
+
|
411 |
+
def __call__(self, data):
|
412 |
+
return data
|
413 |
+
|
414 |
+
|
415 |
+
if __name__ == "__main__":
|
416 |
+
trans = torchvision.transforms.Compose([
|
417 |
+
GroupScale(256),
|
418 |
+
GroupRandomCrop(224),
|
419 |
+
Stack(),
|
420 |
+
ToTorchFormatTensor(),
|
421 |
+
GroupNormalize(
|
422 |
+
mean=[.485, .456, .406],
|
423 |
+
std=[.229, .224, .225]
|
424 |
+
)]
|
425 |
+
)
|
426 |
+
|
427 |
+
im = Image.open('../tensorflow-model-zoo.torch/lena_299.png')
|
428 |
+
|
429 |
+
color_group = [im] * 3
|
430 |
+
rst = trans(color_group)
|
431 |
+
|
432 |
+
gray_group = [im.convert('L')] * 9
|
433 |
+
gray_rst = trans(gray_group)
|
434 |
+
|
435 |
+
trans2 = torchvision.transforms.Compose([
|
436 |
+
GroupRandomSizedCrop(256),
|
437 |
+
Stack(),
|
438 |
+
ToTorchFormatTensor(),
|
439 |
+
GroupNormalize(
|
440 |
+
mean=[.485, .456, .406],
|
441 |
+
std=[.229, .224, .225])
|
442 |
+
])
|
443 |
+
print(trans2(color_group))
|
uniformer_light_image.py
ADDED
@@ -0,0 +1,535 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# All rights reserved.
|
2 |
+
from collections import OrderedDict
|
3 |
+
import torch
|
4 |
+
import torch.nn as nn
|
5 |
+
from functools import partial
|
6 |
+
import torch.nn.functional as F
|
7 |
+
import math
|
8 |
+
from timm.models.vision_transformer import _cfg
|
9 |
+
from timm.models.registry import register_model
|
10 |
+
from timm.models.layers import trunc_normal_, DropPath, to_2tuple
|
11 |
+
|
12 |
+
|
13 |
+
layer_scale = False
|
14 |
+
init_value = 1e-6
|
15 |
+
global_attn = None
|
16 |
+
token_indices = None
|
17 |
+
|
18 |
+
|
19 |
+
# code is from https://github.com/YifanXu74/Evo-ViT
|
20 |
+
def easy_gather(x, indices):
|
21 |
+
# x => B x N x C
|
22 |
+
# indices => B x N
|
23 |
+
B, N, C = x.shape
|
24 |
+
N_new = indices.shape[1]
|
25 |
+
offset = torch.arange(B, dtype=torch.long, device=x.device).view(B, 1) * N
|
26 |
+
indices = indices + offset
|
27 |
+
# only select the informative tokens
|
28 |
+
out = x.reshape(B * N, C)[indices.view(-1)].reshape(B, N_new, C)
|
29 |
+
return out
|
30 |
+
|
31 |
+
|
32 |
+
# code is from https://github.com/YifanXu74/Evo-ViT
|
33 |
+
def merge_tokens(x_drop, score):
|
34 |
+
# x_drop => B x N_drop
|
35 |
+
# score => B x N_drop
|
36 |
+
weight = score / torch.sum(score, dim=1, keepdim=True)
|
37 |
+
x_drop = weight.unsqueeze(-1) * x_drop
|
38 |
+
return torch.sum(x_drop, dim=1, keepdim=True)
|
39 |
+
|
40 |
+
|
41 |
+
class Mlp(nn.Module):
|
42 |
+
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
|
43 |
+
super().__init__()
|
44 |
+
out_features = out_features or in_features
|
45 |
+
hidden_features = hidden_features or in_features
|
46 |
+
self.fc1 = nn.Linear(in_features, hidden_features)
|
47 |
+
self.act = act_layer()
|
48 |
+
self.fc2 = nn.Linear(hidden_features, out_features)
|
49 |
+
self.drop = nn.Dropout(drop)
|
50 |
+
|
51 |
+
def forward(self, x):
|
52 |
+
x = self.fc1(x)
|
53 |
+
x = self.act(x)
|
54 |
+
x = self.drop(x)
|
55 |
+
x = self.fc2(x)
|
56 |
+
x = self.drop(x)
|
57 |
+
return x
|
58 |
+
|
59 |
+
|
60 |
+
class CMlp(nn.Module):
|
61 |
+
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
|
62 |
+
super().__init__()
|
63 |
+
out_features = out_features or in_features
|
64 |
+
hidden_features = hidden_features or in_features
|
65 |
+
self.fc1 = nn.Conv2d(in_features, hidden_features, 1)
|
66 |
+
self.act = act_layer()
|
67 |
+
self.fc2 = nn.Conv2d(hidden_features, out_features, 1)
|
68 |
+
self.drop = nn.Dropout(drop)
|
69 |
+
|
70 |
+
def forward(self, x):
|
71 |
+
x = self.fc1(x)
|
72 |
+
x = self.act(x)
|
73 |
+
x = self.drop(x)
|
74 |
+
x = self.fc2(x)
|
75 |
+
x = self.drop(x)
|
76 |
+
return x
|
77 |
+
|
78 |
+
|
79 |
+
class Attention(nn.Module):
|
80 |
+
def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0., trade_off=1):
|
81 |
+
super().__init__()
|
82 |
+
self.num_heads = num_heads
|
83 |
+
head_dim = dim // num_heads
|
84 |
+
# NOTE scale factor was wrong in my original version, can set manually to be compat with prev weights
|
85 |
+
self.scale = qk_scale or head_dim ** -0.5
|
86 |
+
|
87 |
+
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
|
88 |
+
self.attn_drop = nn.Dropout(attn_drop)
|
89 |
+
self.proj = nn.Linear(dim, dim)
|
90 |
+
self.proj_drop = nn.Dropout(proj_drop)
|
91 |
+
# updating weight for global score
|
92 |
+
self.trade_off = trade_off
|
93 |
+
|
94 |
+
def forward(self, x):
|
95 |
+
B, N, C = x.shape
|
96 |
+
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
|
97 |
+
q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple)
|
98 |
+
|
99 |
+
attn = (q @ k.transpose(-2, -1)) * self.scale
|
100 |
+
attn = attn.softmax(dim=-1)
|
101 |
+
|
102 |
+
# update global score
|
103 |
+
global global_attn
|
104 |
+
tradeoff = self.trade_off
|
105 |
+
if isinstance(global_attn, int):
|
106 |
+
global_attn = torch.mean(attn[:, :, 0, 1:], dim=1)
|
107 |
+
elif global_attn.shape[1] == N - 1:
|
108 |
+
# no additional token and no pruning, update all global scores
|
109 |
+
cls_attn = torch.mean(attn[:, :, 0, 1:], dim=1)
|
110 |
+
global_attn = (1 - tradeoff) * global_attn + tradeoff * cls_attn
|
111 |
+
else:
|
112 |
+
# only update the informative tokens
|
113 |
+
# the first one is class token
|
114 |
+
# the last one is rrepresentative token
|
115 |
+
cls_attn = torch.mean(attn[:, :, 0, 1:-1], dim=1)
|
116 |
+
if self.training:
|
117 |
+
temp_attn = (1 - tradeoff) * global_attn[:, :(N - 2)] + tradeoff * cls_attn
|
118 |
+
global_attn = torch.cat((temp_attn, global_attn[:, (N - 2):]), dim=1)
|
119 |
+
else:
|
120 |
+
# no use torch.cat() for fast inference
|
121 |
+
global_attn[:, :(N - 2)] = (1 - tradeoff) * global_attn[:, :(N - 2)] + tradeoff * cls_attn
|
122 |
+
|
123 |
+
attn = self.attn_drop(attn)
|
124 |
+
|
125 |
+
x = (attn @ v).transpose(1, 2).reshape(B, N, C)
|
126 |
+
x = self.proj(x)
|
127 |
+
x = self.proj_drop(x)
|
128 |
+
return x
|
129 |
+
|
130 |
+
|
131 |
+
class CBlock(nn.Module):
|
132 |
+
def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
|
133 |
+
drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm):
|
134 |
+
super().__init__()
|
135 |
+
self.pos_embed = nn.Conv2d(dim, dim, 3, padding=1, groups=dim)
|
136 |
+
self.norm1 = nn.BatchNorm2d(dim)
|
137 |
+
self.conv1 = nn.Conv2d(dim, dim, 1)
|
138 |
+
self.conv2 = nn.Conv2d(dim, dim, 1)
|
139 |
+
self.attn = nn.Conv2d(dim, dim, 5, padding=2, groups=dim)
|
140 |
+
# NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
|
141 |
+
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
142 |
+
self.norm2 = nn.BatchNorm2d(dim)
|
143 |
+
mlp_hidden_dim = int(dim * mlp_ratio)
|
144 |
+
self.mlp = CMlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
|
145 |
+
global layer_scale
|
146 |
+
self.ls = layer_scale
|
147 |
+
if self.ls:
|
148 |
+
global init_value
|
149 |
+
print(f"Use layer_scale: {layer_scale}, init_values: {init_value}")
|
150 |
+
self.gamma_1 = nn.Parameter(init_value * torch.ones((1, dim, 1, 1)),requires_grad=True)
|
151 |
+
self.gamma_2 = nn.Parameter(init_value * torch.ones((1, dim, 1, 1)),requires_grad=True)
|
152 |
+
|
153 |
+
def forward(self, x):
|
154 |
+
x = x + self.pos_embed(x)
|
155 |
+
if self.ls:
|
156 |
+
x = x + self.drop_path(self.gamma_1 * self.conv2(self.attn(self.conv1(self.norm1(x)))))
|
157 |
+
x = x + self.drop_path(self.gamma_2 * self.mlp(self.norm2(x)))
|
158 |
+
else:
|
159 |
+
x = x + self.drop_path(self.conv2(self.attn(self.conv1(self.norm1(x)))))
|
160 |
+
x = x + self.drop_path(self.mlp(self.norm2(x)))
|
161 |
+
return x
|
162 |
+
|
163 |
+
|
164 |
+
class EvoSABlock(nn.Module):
|
165 |
+
def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
|
166 |
+
drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, prune_ratio=1,
|
167 |
+
trade_off=0, downsample=False):
|
168 |
+
super().__init__()
|
169 |
+
self.pos_embed = nn.Conv2d(dim, dim, 3, padding=1, groups=dim)
|
170 |
+
self.norm1 = norm_layer(dim)
|
171 |
+
self.attn = Attention(
|
172 |
+
dim,
|
173 |
+
num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale,
|
174 |
+
attn_drop=attn_drop, proj_drop=drop, trade_off=trade_off)
|
175 |
+
# NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
|
176 |
+
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
177 |
+
self.norm2 = norm_layer(dim)
|
178 |
+
mlp_hidden_dim = int(dim * mlp_ratio)
|
179 |
+
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
|
180 |
+
self.prune_ratio = prune_ratio
|
181 |
+
self.downsample = downsample
|
182 |
+
if downsample:
|
183 |
+
self.avgpool = nn.AvgPool2d(kernel_size=2, stride=2)
|
184 |
+
global layer_scale
|
185 |
+
self.ls = layer_scale
|
186 |
+
if self.ls:
|
187 |
+
global init_value
|
188 |
+
print(f"Use layer_scale: {layer_scale}, init_values: {init_value}")
|
189 |
+
self.gamma_1 = nn.Parameter(init_value * torch.ones((dim)),requires_grad=True)
|
190 |
+
self.gamma_2 = nn.Parameter(init_value * torch.ones((dim)),requires_grad=True)
|
191 |
+
if self.prune_ratio != 1:
|
192 |
+
self.gamma_3 = nn.Parameter(init_value * torch.ones((dim)),requires_grad=True)
|
193 |
+
|
194 |
+
def forward(self, cls_token, x):
|
195 |
+
x = x + self.pos_embed(x)
|
196 |
+
B, C, H, W = x.shape
|
197 |
+
x = x.flatten(2).transpose(1, 2)
|
198 |
+
|
199 |
+
if self.prune_ratio == 1:
|
200 |
+
x = torch.cat([cls_token, x], dim=1)
|
201 |
+
if self.ls:
|
202 |
+
x = x + self.drop_path(self.gamma_1 * self.attn(self.norm1(x)))
|
203 |
+
x = x + self.drop_path(self.gamma_2 * self.mlp(self.norm2(x)))
|
204 |
+
else:
|
205 |
+
x = x + self.drop_path(self.attn(self.norm1(x)))
|
206 |
+
x = x + self.drop_path(self.mlp(self.norm2(x)))
|
207 |
+
cls_token, x = x[:, :1], x[:, 1:]
|
208 |
+
x = x.transpose(1, 2).reshape(B, C, H, W)
|
209 |
+
return cls_token, x
|
210 |
+
else:
|
211 |
+
global global_attn, token_indices
|
212 |
+
# calculate the number of informative tokens
|
213 |
+
N = x.shape[1]
|
214 |
+
N_ = int(N * self.prune_ratio)
|
215 |
+
# sort global attention
|
216 |
+
indices = torch.argsort(global_attn, dim=1, descending=True)
|
217 |
+
|
218 |
+
# concatenate x, global attention and token indices => x_ga_ti
|
219 |
+
# rearrange the tensor according to new indices
|
220 |
+
x_ga_ti = torch.cat((x, global_attn.unsqueeze(-1), token_indices.unsqueeze(-1)), dim=-1)
|
221 |
+
x_ga_ti = easy_gather(x_ga_ti, indices)
|
222 |
+
x_sorted, global_attn, token_indices = x_ga_ti[:, :, :-2], x_ga_ti[:, :, -2], x_ga_ti[:, :, -1]
|
223 |
+
|
224 |
+
# informative tokens
|
225 |
+
x_info = x_sorted[:, :N_]
|
226 |
+
# merge dropped tokens
|
227 |
+
x_drop = x_sorted[:, N_:]
|
228 |
+
score = global_attn[:, N_:]
|
229 |
+
# B x N_drop x C => B x 1 x C
|
230 |
+
rep_token = merge_tokens(x_drop, score)
|
231 |
+
# concatenate new tokens
|
232 |
+
x = torch.cat((cls_token, x_info, rep_token), dim=1)
|
233 |
+
|
234 |
+
if self.ls:
|
235 |
+
# slow update
|
236 |
+
fast_update = 0
|
237 |
+
tmp_x = self.attn(self.norm1(x))
|
238 |
+
fast_update = fast_update + tmp_x[:, -1:]
|
239 |
+
x = x + self.drop_path(self.gamma_1 * tmp_x)
|
240 |
+
tmp_x = self.mlp(self.norm2(x))
|
241 |
+
fast_update = fast_update + tmp_x[:, -1:]
|
242 |
+
x = x + self.drop_path(self.gamma_2 * tmp_x)
|
243 |
+
# fast update
|
244 |
+
x_drop = x_drop + self.gamma_3 * fast_update.expand(-1, N - N_, -1)
|
245 |
+
else:
|
246 |
+
# slow update
|
247 |
+
fast_update = 0
|
248 |
+
tmp_x = self.attn(self.norm1(x))
|
249 |
+
fast_update = fast_update + tmp_x[:, -1:]
|
250 |
+
x = x + self.drop_path(tmp_x)
|
251 |
+
tmp_x = self.mlp(self.norm2(x))
|
252 |
+
fast_update = fast_update + tmp_x[:, -1:]
|
253 |
+
x = x + self.drop_path(tmp_x)
|
254 |
+
# fast update
|
255 |
+
x_drop = x_drop + fast_update.expand(-1, N - N_, -1)
|
256 |
+
|
257 |
+
cls_token, x = x[:, :1, :], x[:, 1:-1, :]
|
258 |
+
if self.training:
|
259 |
+
x_sorted = torch.cat((x, x_drop), dim=1)
|
260 |
+
else:
|
261 |
+
x_sorted[:, N_:] = x_drop
|
262 |
+
x_sorted[:, :N_] = x
|
263 |
+
|
264 |
+
# recover token
|
265 |
+
# scale for normalization
|
266 |
+
old_global_scale = torch.sum(global_attn, dim=1, keepdim=True)
|
267 |
+
# recover order
|
268 |
+
indices = torch.argsort(token_indices, dim=1)
|
269 |
+
x_ga_ti = torch.cat((x_sorted, global_attn.unsqueeze(-1), token_indices.unsqueeze(-1)), dim=-1)
|
270 |
+
x_ga_ti = easy_gather(x_ga_ti, indices)
|
271 |
+
x_patch, global_attn, token_indices = x_ga_ti[:, :, :-2], x_ga_ti[:, :, -2], x_ga_ti[:, :, -1]
|
272 |
+
x_patch = x_patch.transpose(1, 2).reshape(B, C, H, W)
|
273 |
+
|
274 |
+
if self.downsample:
|
275 |
+
# downsample global attention
|
276 |
+
global_attn = global_attn.reshape(B, 1, H, W)
|
277 |
+
global_attn = self.avgpool(global_attn).view(B, -1)
|
278 |
+
# normalize global attention
|
279 |
+
new_global_scale = torch.sum(global_attn, dim=1, keepdim=True)
|
280 |
+
scale = old_global_scale / new_global_scale
|
281 |
+
global_attn = global_attn * scale
|
282 |
+
|
283 |
+
return cls_token, x_patch
|
284 |
+
|
285 |
+
|
286 |
+
class PatchEmbed(nn.Module):
|
287 |
+
""" Image to Patch Embedding
|
288 |
+
"""
|
289 |
+
def __init__(self, patch_size=16, in_chans=3, embed_dim=768):
|
290 |
+
super().__init__()
|
291 |
+
self.norm = nn.LayerNorm(embed_dim)
|
292 |
+
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)
|
293 |
+
|
294 |
+
def forward(self, x):
|
295 |
+
x = self.proj(x)
|
296 |
+
B, C, H, W = x.shape
|
297 |
+
x = x.flatten(2).transpose(1, 2)
|
298 |
+
x = self.norm(x)
|
299 |
+
x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous()
|
300 |
+
return x
|
301 |
+
|
302 |
+
|
303 |
+
class head_embedding(nn.Module):
|
304 |
+
def __init__(self, in_channels, out_channels):
|
305 |
+
super(head_embedding, self).__init__()
|
306 |
+
self.proj = nn.Sequential(
|
307 |
+
nn.Conv2d(in_channels, out_channels // 2, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1)),
|
308 |
+
nn.BatchNorm2d(out_channels // 2),
|
309 |
+
nn.GELU(),
|
310 |
+
nn.Conv2d(out_channels // 2, out_channels, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1)),
|
311 |
+
nn.BatchNorm2d(out_channels),
|
312 |
+
)
|
313 |
+
|
314 |
+
def forward(self, x):
|
315 |
+
x = self.proj(x)
|
316 |
+
return x
|
317 |
+
|
318 |
+
|
319 |
+
class middle_embedding(nn.Module):
|
320 |
+
def __init__(self, in_channels, out_channels):
|
321 |
+
super(middle_embedding, self).__init__()
|
322 |
+
|
323 |
+
self.proj = nn.Sequential(
|
324 |
+
nn.Conv2d(in_channels, out_channels, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1)),
|
325 |
+
nn.BatchNorm2d(out_channels),
|
326 |
+
)
|
327 |
+
|
328 |
+
def forward(self, x):
|
329 |
+
x = self.proj(x)
|
330 |
+
return x
|
331 |
+
|
332 |
+
|
333 |
+
class UniFormer_Light(nn.Module):
|
334 |
+
""" Vision Transformer
|
335 |
+
A PyTorch impl of : `An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale` -
|
336 |
+
https://arxiv.org/abs/2010.11929
|
337 |
+
"""
|
338 |
+
def __init__(self, depth=[3, 4, 8, 3], in_chans=3, num_classes=1000, embed_dim=[64, 128, 320, 512],
|
339 |
+
head_dim=64, mlp_ratio=[4., 4., 4., 4.], qkv_bias=True, qk_scale=None, representation_size=None,
|
340 |
+
drop_rate=0., attn_drop_rate=0., drop_path_rate=0., norm_layer=None, conv_stem=False,
|
341 |
+
prune_ratio=[[], [], [1, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5], [0.5, 0.5, 0.5]],
|
342 |
+
trade_off=[[], [], [1, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5], [0.5, 0.5, 0.5]]):
|
343 |
+
"""
|
344 |
+
Args:
|
345 |
+
img_size (int, tuple): input image size
|
346 |
+
patch_size (int, tuple): patch size
|
347 |
+
in_chans (int): number of input channels
|
348 |
+
num_classes (int): number of classes for classification head
|
349 |
+
embed_dim (int): embedding dimension
|
350 |
+
depth (int): depth of transformer
|
351 |
+
head_dim (int): head dimension
|
352 |
+
mlp_ratio (list): ratio of mlp hidden dim to embedding dim
|
353 |
+
qkv_bias (bool): enable bias for qkv if True
|
354 |
+
qk_scale (float): override default qk scale of head_dim ** -0.5 if set
|
355 |
+
representation_size (Optional[int]): enable and set representation layer (pre-logits) to this value if set
|
356 |
+
drop_rate (float): dropout rate
|
357 |
+
attn_drop_rate (float): attention dropout rate
|
358 |
+
drop_path_rate (float): stochastic depth rate
|
359 |
+
norm_layer: (nn.Module): normalization layer
|
360 |
+
"""
|
361 |
+
super().__init__()
|
362 |
+
self.num_classes = num_classes
|
363 |
+
self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models
|
364 |
+
norm_layer = norm_layer or partial(nn.LayerNorm, eps=1e-6)
|
365 |
+
if conv_stem:
|
366 |
+
self.patch_embed1 = head_embedding(in_channels=in_chans, out_channels=embed_dim[0])
|
367 |
+
self.patch_embed2 = PatchEmbed(
|
368 |
+
patch_size=2, in_chans=embed_dim[0], embed_dim=embed_dim[1])
|
369 |
+
self.patch_embed3 = PatchEmbed(
|
370 |
+
patch_size=2, in_chans=embed_dim[1], embed_dim=embed_dim[2])
|
371 |
+
self.patch_embed4 = PatchEmbed(
|
372 |
+
patch_size=2, in_chans=embed_dim[2], embed_dim=embed_dim[3])
|
373 |
+
else:
|
374 |
+
self.patch_embed1 = PatchEmbed(
|
375 |
+
patch_size=4, in_chans=in_chans, embed_dim=embed_dim[0])
|
376 |
+
self.patch_embed2 = PatchEmbed(
|
377 |
+
patch_size=2, in_chans=embed_dim[0], embed_dim=embed_dim[1])
|
378 |
+
self.patch_embed3 = PatchEmbed(
|
379 |
+
patch_size=2, in_chans=embed_dim[1], embed_dim=embed_dim[2])
|
380 |
+
self.patch_embed4 = PatchEmbed(
|
381 |
+
patch_size=2, in_chans=embed_dim[2], embed_dim=embed_dim[3])
|
382 |
+
|
383 |
+
# class token
|
384 |
+
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim[2]))
|
385 |
+
self.cls_upsample = nn.Linear(embed_dim[2], embed_dim[3])
|
386 |
+
|
387 |
+
self.pos_drop = nn.Dropout(p=drop_rate)
|
388 |
+
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depth))] # stochastic depth decay rule
|
389 |
+
num_heads = [dim // head_dim for dim in embed_dim]
|
390 |
+
self.blocks1 = nn.ModuleList([
|
391 |
+
CBlock(
|
392 |
+
dim=embed_dim[0], num_heads=num_heads[0], mlp_ratio=mlp_ratio[0], qkv_bias=qkv_bias, qk_scale=qk_scale,
|
393 |
+
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer)
|
394 |
+
for i in range(depth[0])])
|
395 |
+
self.blocks2 = nn.ModuleList([
|
396 |
+
CBlock(
|
397 |
+
dim=embed_dim[1], num_heads=num_heads[1], mlp_ratio=mlp_ratio[1], qkv_bias=qkv_bias, qk_scale=qk_scale,
|
398 |
+
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i+depth[0]], norm_layer=norm_layer)
|
399 |
+
for i in range(depth[1])])
|
400 |
+
self.blocks3 = nn.ModuleList([
|
401 |
+
EvoSABlock(
|
402 |
+
dim=embed_dim[2], num_heads=num_heads[2], mlp_ratio=mlp_ratio[2], qkv_bias=qkv_bias, qk_scale=qk_scale,
|
403 |
+
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i+depth[0]+depth[1]], norm_layer=norm_layer,
|
404 |
+
prune_ratio=prune_ratio[2][i], trade_off=trade_off[2][i],
|
405 |
+
downsample=True if i == depth[2] - 1 else False)
|
406 |
+
for i in range(depth[2])])
|
407 |
+
self.blocks4 = nn.ModuleList([
|
408 |
+
EvoSABlock(
|
409 |
+
dim=embed_dim[3], num_heads=num_heads[3], mlp_ratio=mlp_ratio[3], qkv_bias=qkv_bias, qk_scale=qk_scale,
|
410 |
+
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i+depth[0]+depth[1]+depth[2]], norm_layer=norm_layer,
|
411 |
+
prune_ratio=prune_ratio[3][i], trade_off=trade_off[3][i])
|
412 |
+
for i in range(depth[3])])
|
413 |
+
self.norm = nn.BatchNorm2d(embed_dim[-1])
|
414 |
+
self.norm_cls = nn.LayerNorm(embed_dim[-1])
|
415 |
+
|
416 |
+
# Representation layer
|
417 |
+
if representation_size:
|
418 |
+
self.num_features = representation_size
|
419 |
+
self.pre_logits = nn.Sequential(OrderedDict([
|
420 |
+
('fc', nn.Linear(embed_dim, representation_size)),
|
421 |
+
('act', nn.Tanh())
|
422 |
+
]))
|
423 |
+
else:
|
424 |
+
self.pre_logits = nn.Identity()
|
425 |
+
|
426 |
+
# Classifier head
|
427 |
+
self.head = nn.Linear(embed_dim[-1], num_classes) if num_classes > 0 else nn.Identity()
|
428 |
+
self.head_cls = nn.Linear(embed_dim[-1], num_classes) if num_classes > 0 else nn.Identity()
|
429 |
+
|
430 |
+
self.apply(self._init_weights)
|
431 |
+
|
432 |
+
def _init_weights(self, m):
|
433 |
+
if isinstance(m, nn.Linear):
|
434 |
+
trunc_normal_(m.weight, std=.02)
|
435 |
+
if isinstance(m, nn.Linear) and m.bias is not None:
|
436 |
+
nn.init.constant_(m.bias, 0)
|
437 |
+
elif isinstance(m, nn.LayerNorm):
|
438 |
+
nn.init.constant_(m.bias, 0)
|
439 |
+
nn.init.constant_(m.weight, 1.0)
|
440 |
+
|
441 |
+
@torch.jit.ignore
|
442 |
+
def no_weight_decay(self):
|
443 |
+
return {'pos_embed', 'cls_token'}
|
444 |
+
|
445 |
+
def get_classifier(self):
|
446 |
+
return self.head
|
447 |
+
|
448 |
+
def reset_classifier(self, num_classes, global_pool=''):
|
449 |
+
self.num_classes = num_classes
|
450 |
+
self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity()
|
451 |
+
|
452 |
+
def forward_features(self, x):
|
453 |
+
B = x.shape[0]
|
454 |
+
x = self.patch_embed1(x)
|
455 |
+
x = self.pos_drop(x)
|
456 |
+
for blk in self.blocks1:
|
457 |
+
x = blk(x)
|
458 |
+
x = self.patch_embed2(x)
|
459 |
+
for blk in self.blocks2:
|
460 |
+
x = blk(x)
|
461 |
+
x = self.patch_embed3(x)
|
462 |
+
# add cls_token in stage3
|
463 |
+
cls_token = self.cls_token.expand(x.shape[0], -1, -1)
|
464 |
+
global global_attn, token_indices
|
465 |
+
global_attn = 0
|
466 |
+
token_indices = torch.arange(x.shape[2] * x.shape[3], dtype=torch.long, device=x.device).unsqueeze(0)
|
467 |
+
token_indices = token_indices.expand(x.shape[0], -1)
|
468 |
+
for blk in self.blocks3:
|
469 |
+
cls_token, x = blk(cls_token, x)
|
470 |
+
# upsample cls_token before stage4
|
471 |
+
cls_token = self.cls_upsample(cls_token)
|
472 |
+
x = self.patch_embed4(x)
|
473 |
+
# whether reset global attention? Now simple avgpool
|
474 |
+
token_indices = torch.arange(x.shape[2] * x.shape[3], dtype=torch.long, device=x.device).unsqueeze(0)
|
475 |
+
token_indices = token_indices.expand(x.shape[0], -1)
|
476 |
+
for blk in self.blocks4:
|
477 |
+
cls_token, x = blk(cls_token, x)
|
478 |
+
if self.training:
|
479 |
+
# layer normalization for cls_token
|
480 |
+
cls_token = self.norm_cls(cls_token)
|
481 |
+
x = self.norm(x)
|
482 |
+
x = self.pre_logits(x)
|
483 |
+
return cls_token, x
|
484 |
+
|
485 |
+
def forward(self, x):
|
486 |
+
cls_token, x = self.forward_features(x)
|
487 |
+
x = x.flatten(2).mean(-1)
|
488 |
+
if self.training:
|
489 |
+
x = self.head(x), self.head_cls(cls_token.squeeze(1))
|
490 |
+
else:
|
491 |
+
x = self.head(x)
|
492 |
+
return x
|
493 |
+
|
494 |
+
|
495 |
+
def uniformer_xxs_image(**kwargs):
|
496 |
+
model = UniFormer_Light(
|
497 |
+
depth=[2, 5, 8, 2], conv_stem=True,
|
498 |
+
prune_ratio=[[], [], [1, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5], [0.5, 0.5]],
|
499 |
+
trade_off=[[], [], [1, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5], [0.5, 0.5]],
|
500 |
+
embed_dim=[56, 112, 224, 448], head_dim=28, mlp_ratio=[3, 3, 3, 3], qkv_bias=True,
|
501 |
+
**kwargs)
|
502 |
+
model.default_cfg = _cfg()
|
503 |
+
return model
|
504 |
+
|
505 |
+
|
506 |
+
def uniformer_xs_image(**kwargs):
|
507 |
+
model = UniFormer_Light(
|
508 |
+
depth=[3, 5, 9, 3], conv_stem=True,
|
509 |
+
prune_ratio=[[], [], [1, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5], [0.5, 0.5, 0.5]],
|
510 |
+
trade_off=[[], [], [1, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5], [0.5, 0.5, 0.5]],
|
511 |
+
embed_dim=[64, 128, 256, 512], head_dim=32, mlp_ratio=[3, 3, 3, 3], qkv_bias=True,
|
512 |
+
**kwargs)
|
513 |
+
model.default_cfg = _cfg()
|
514 |
+
return model
|
515 |
+
|
516 |
+
|
517 |
+
if __name__ == '__main__':
|
518 |
+
import time
|
519 |
+
from fvcore.nn import FlopCountAnalysis
|
520 |
+
from fvcore.nn import flop_count_table
|
521 |
+
import numpy as np
|
522 |
+
|
523 |
+
seed = 4217
|
524 |
+
np.random.seed(seed)
|
525 |
+
torch.manual_seed(seed)
|
526 |
+
torch.cuda.manual_seed(seed)
|
527 |
+
torch.cuda.manual_seed_all(seed)
|
528 |
+
|
529 |
+
model = uniformer_xxs_image()
|
530 |
+
# print(model)
|
531 |
+
|
532 |
+
flops = FlopCountAnalysis(model, torch.rand(1, 3, 160, 160))
|
533 |
+
s = time.time()
|
534 |
+
print(flop_count_table(flops, max_depth=1))
|
535 |
+
print(time.time()-s)
|
uniformer_light_video.py
ADDED
@@ -0,0 +1,595 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# All rights reserved.
|
2 |
+
from math import ceil, sqrt
|
3 |
+
from collections import OrderedDict
|
4 |
+
import torch
|
5 |
+
import torch.nn as nn
|
6 |
+
from functools import partial
|
7 |
+
from timm.models.vision_transformer import _cfg
|
8 |
+
from timm.models.layers import trunc_normal_, DropPath, to_2tuple
|
9 |
+
import os
|
10 |
+
|
11 |
+
|
12 |
+
global_attn = None
|
13 |
+
token_indices = None
|
14 |
+
|
15 |
+
model_path = 'path_to_models'
|
16 |
+
model_path = {
|
17 |
+
'uniformer_xxs_128_in1k': os.path.join(model_path, 'uniformer_xxs_128_in1k.pth'),
|
18 |
+
'uniformer_xxs_160_in1k': os.path.join(model_path, 'uniformer_xxs_160_in1k.pth'),
|
19 |
+
'uniformer_xxs_192_in1k': os.path.join(model_path, 'uniformer_xxs_192_in1k.pth'),
|
20 |
+
'uniformer_xxs_224_in1k': os.path.join(model_path, 'uniformer_xxs_224_in1k.pth'),
|
21 |
+
'uniformer_xs_192_in1k': os.path.join(model_path, 'uniformer_xs_192_in1k.pth'),
|
22 |
+
'uniformer_xs_224_in1k': os.path.join(model_path, 'uniformer_xs_224_in1k.pth'),
|
23 |
+
}
|
24 |
+
|
25 |
+
|
26 |
+
def conv_3xnxn(inp, oup, kernel_size=3, stride=3, groups=1):
|
27 |
+
return nn.Conv3d(inp, oup, (3, kernel_size, kernel_size), (2, stride, stride), (1, 0, 0), groups=groups)
|
28 |
+
|
29 |
+
def conv_1xnxn(inp, oup, kernel_size=3, stride=3, groups=1):
|
30 |
+
return nn.Conv3d(inp, oup, (1, kernel_size, kernel_size), (1, stride, stride), (0, 0, 0), groups=groups)
|
31 |
+
|
32 |
+
def conv_3xnxn_std(inp, oup, kernel_size=3, stride=3, groups=1):
|
33 |
+
return nn.Conv3d(inp, oup, (3, kernel_size, kernel_size), (1, stride, stride), (1, 0, 0), groups=groups)
|
34 |
+
|
35 |
+
def conv_1x1x1(inp, oup, groups=1):
|
36 |
+
return nn.Conv3d(inp, oup, (1, 1, 1), (1, 1, 1), (0, 0, 0), groups=groups)
|
37 |
+
|
38 |
+
def conv_3x3x3(inp, oup, groups=1):
|
39 |
+
return nn.Conv3d(inp, oup, (3, 3, 3), (1, 1, 1), (1, 1, 1), groups=groups)
|
40 |
+
|
41 |
+
def conv_5x5x5(inp, oup, groups=1):
|
42 |
+
return nn.Conv3d(inp, oup, (5, 5, 5), (1, 1, 1), (2, 2, 2), groups=groups)
|
43 |
+
|
44 |
+
def bn_3d(dim):
|
45 |
+
return nn.BatchNorm3d(dim)
|
46 |
+
|
47 |
+
|
48 |
+
# code is from https://github.com/YifanXu74/Evo-ViT
|
49 |
+
def easy_gather(x, indices):
|
50 |
+
# x => B x N x C
|
51 |
+
# indices => B x N
|
52 |
+
B, N, C = x.shape
|
53 |
+
N_new = indices.shape[1]
|
54 |
+
offset = torch.arange(B, dtype=torch.long, device=x.device).view(B, 1) * N
|
55 |
+
indices = indices + offset
|
56 |
+
# only select the informative tokens
|
57 |
+
out = x.reshape(B * N, C)[indices.view(-1)].reshape(B, N_new, C)
|
58 |
+
return out
|
59 |
+
|
60 |
+
|
61 |
+
# code is from https://github.com/YifanXu74/Evo-ViT
|
62 |
+
def merge_tokens(x_drop, score):
|
63 |
+
# x_drop => B x N_drop
|
64 |
+
# score => B x N_drop
|
65 |
+
weight = score / torch.sum(score, dim=1, keepdim=True)
|
66 |
+
x_drop = weight.unsqueeze(-1) * x_drop
|
67 |
+
return torch.sum(x_drop, dim=1, keepdim=True)
|
68 |
+
|
69 |
+
|
70 |
+
class Mlp(nn.Module):
|
71 |
+
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
|
72 |
+
super().__init__()
|
73 |
+
out_features = out_features or in_features
|
74 |
+
hidden_features = hidden_features or in_features
|
75 |
+
self.fc1 = nn.Linear(in_features, hidden_features)
|
76 |
+
self.act = act_layer()
|
77 |
+
self.fc2 = nn.Linear(hidden_features, out_features)
|
78 |
+
self.drop = nn.Dropout(drop)
|
79 |
+
|
80 |
+
def forward(self, x):
|
81 |
+
x = self.fc1(x)
|
82 |
+
x = self.act(x)
|
83 |
+
x = self.drop(x)
|
84 |
+
x = self.fc2(x)
|
85 |
+
x = self.drop(x)
|
86 |
+
return x
|
87 |
+
|
88 |
+
|
89 |
+
class Attention(nn.Module):
|
90 |
+
def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0., trade_off=1):
|
91 |
+
super().__init__()
|
92 |
+
self.num_heads = num_heads
|
93 |
+
head_dim = dim // num_heads
|
94 |
+
# NOTE scale factor was wrong in my original version, can set manually to be compat with prev weights
|
95 |
+
self.scale = qk_scale or head_dim ** -0.5
|
96 |
+
|
97 |
+
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
|
98 |
+
self.attn_drop = nn.Dropout(attn_drop)
|
99 |
+
self.proj = nn.Linear(dim, dim)
|
100 |
+
self.proj_drop = nn.Dropout(proj_drop)
|
101 |
+
# updating weight for global score
|
102 |
+
self.trade_off = trade_off
|
103 |
+
|
104 |
+
def forward(self, x):
|
105 |
+
B, N, C = x.shape
|
106 |
+
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
|
107 |
+
q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple)
|
108 |
+
|
109 |
+
attn = (q @ k.transpose(-2, -1)) * self.scale
|
110 |
+
attn = attn.softmax(dim=-1)
|
111 |
+
|
112 |
+
# update global score
|
113 |
+
global global_attn
|
114 |
+
tradeoff = self.trade_off
|
115 |
+
if isinstance(global_attn, int):
|
116 |
+
global_attn = torch.mean(attn[:, :, 0, 1:], dim=1)
|
117 |
+
elif global_attn.shape[1] == N - 1:
|
118 |
+
# no additional token and no pruning, update all global scores
|
119 |
+
cls_attn = torch.mean(attn[:, :, 0, 1:], dim=1)
|
120 |
+
global_attn = (1 - tradeoff) * global_attn + tradeoff * cls_attn
|
121 |
+
else:
|
122 |
+
# only update the informative tokens
|
123 |
+
# the first one is class token
|
124 |
+
# the last one is rrepresentative token
|
125 |
+
cls_attn = torch.mean(attn[:, :, 0, 1:-1], dim=1)
|
126 |
+
if self.training:
|
127 |
+
temp_attn = (1 - tradeoff) * global_attn[:, :(N - 2)] + tradeoff * cls_attn
|
128 |
+
global_attn = torch.cat((temp_attn, global_attn[:, (N - 2):]), dim=1)
|
129 |
+
else:
|
130 |
+
# no use torch.cat() for fast inference
|
131 |
+
global_attn[:, :(N - 2)] = (1 - tradeoff) * global_attn[:, :(N - 2)] + tradeoff * cls_attn
|
132 |
+
|
133 |
+
attn = self.attn_drop(attn)
|
134 |
+
|
135 |
+
x = (attn @ v).transpose(1, 2).reshape(B, N, C)
|
136 |
+
x = self.proj(x)
|
137 |
+
x = self.proj_drop(x)
|
138 |
+
return x
|
139 |
+
|
140 |
+
|
141 |
+
class CMlp(nn.Module):
|
142 |
+
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
|
143 |
+
super().__init__()
|
144 |
+
out_features = out_features or in_features
|
145 |
+
hidden_features = hidden_features or in_features
|
146 |
+
self.fc1 = conv_1x1x1(in_features, hidden_features)
|
147 |
+
self.act = act_layer()
|
148 |
+
self.fc2 = conv_1x1x1(hidden_features, out_features)
|
149 |
+
self.drop = nn.Dropout(drop)
|
150 |
+
|
151 |
+
def forward(self, x):
|
152 |
+
x = self.fc1(x)
|
153 |
+
x = self.act(x)
|
154 |
+
x = self.drop(x)
|
155 |
+
x = self.fc2(x)
|
156 |
+
x = self.drop(x)
|
157 |
+
return x
|
158 |
+
|
159 |
+
|
160 |
+
class CBlock(nn.Module):
|
161 |
+
def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
|
162 |
+
drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm):
|
163 |
+
super().__init__()
|
164 |
+
self.pos_embed = conv_3x3x3(dim, dim, groups=dim)
|
165 |
+
self.norm1 = bn_3d(dim)
|
166 |
+
self.conv1 = conv_1x1x1(dim, dim, 1)
|
167 |
+
self.conv2 = conv_1x1x1(dim, dim, 1)
|
168 |
+
self.attn = conv_5x5x5(dim, dim, groups=dim)
|
169 |
+
# NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
|
170 |
+
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
171 |
+
self.norm2 = bn_3d(dim)
|
172 |
+
mlp_hidden_dim = int(dim * mlp_ratio)
|
173 |
+
self.mlp = CMlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
|
174 |
+
|
175 |
+
def forward(self, x):
|
176 |
+
x = x + self.pos_embed(x)
|
177 |
+
x = x + self.drop_path(self.conv2(self.attn(self.conv1(self.norm1(x)))))
|
178 |
+
x = x + self.drop_path(self.mlp(self.norm2(x)))
|
179 |
+
return x
|
180 |
+
|
181 |
+
|
182 |
+
class EvoSABlock(nn.Module):
|
183 |
+
def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
|
184 |
+
drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, prune_ratio=1,
|
185 |
+
trade_off=0, downsample=False):
|
186 |
+
super().__init__()
|
187 |
+
self.pos_embed = conv_3x3x3(dim, dim, groups=dim)
|
188 |
+
self.norm1 = norm_layer(dim)
|
189 |
+
self.attn = Attention(
|
190 |
+
dim,
|
191 |
+
num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale,
|
192 |
+
attn_drop=attn_drop, proj_drop=drop, trade_off=trade_off)
|
193 |
+
# NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
|
194 |
+
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
195 |
+
self.norm2 = norm_layer(dim)
|
196 |
+
mlp_hidden_dim = int(dim * mlp_ratio)
|
197 |
+
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
|
198 |
+
self.prune_ratio = prune_ratio
|
199 |
+
self.downsample = downsample
|
200 |
+
if downsample:
|
201 |
+
self.avgpool = nn.AvgPool3d(kernel_size=(1, 2, 2), stride=(1, 2, 2))
|
202 |
+
|
203 |
+
def forward(self, cls_token, x):
|
204 |
+
x = x + self.pos_embed(x)
|
205 |
+
B, C, T, H, W = x.shape
|
206 |
+
x = x.flatten(2).transpose(1, 2)
|
207 |
+
|
208 |
+
if self.prune_ratio == 1:
|
209 |
+
x = torch.cat([cls_token, x], dim=1)
|
210 |
+
x = x + self.drop_path(self.attn(self.norm1(x)))
|
211 |
+
x = x + self.drop_path(self.mlp(self.norm2(x)))
|
212 |
+
cls_token, x = x[:, :1], x[:, 1:]
|
213 |
+
x = x.transpose(1, 2).reshape(B, C, T, H, W)
|
214 |
+
return cls_token, x
|
215 |
+
else:
|
216 |
+
global global_attn, token_indices
|
217 |
+
# calculate the number of informative tokens
|
218 |
+
N = x.shape[1]
|
219 |
+
N_ = int(N * self.prune_ratio)
|
220 |
+
# sort global attention
|
221 |
+
indices = torch.argsort(global_attn, dim=1, descending=True)
|
222 |
+
|
223 |
+
# concatenate x, global attention and token indices => x_ga_ti
|
224 |
+
# rearrange the tensor according to new indices
|
225 |
+
x_ga_ti = torch.cat((x, global_attn.unsqueeze(-1), token_indices.unsqueeze(-1)), dim=-1)
|
226 |
+
x_ga_ti = easy_gather(x_ga_ti, indices)
|
227 |
+
x_sorted, global_attn, token_indices = x_ga_ti[:, :, :-2], x_ga_ti[:, :, -2], x_ga_ti[:, :, -1]
|
228 |
+
|
229 |
+
# informative tokens
|
230 |
+
x_info = x_sorted[:, :N_]
|
231 |
+
# merge dropped tokens
|
232 |
+
x_drop = x_sorted[:, N_:]
|
233 |
+
score = global_attn[:, N_:]
|
234 |
+
# B x N_drop x C => B x 1 x C
|
235 |
+
rep_token = merge_tokens(x_drop, score)
|
236 |
+
# concatenate new tokens
|
237 |
+
x = torch.cat((cls_token, x_info, rep_token), dim=1)
|
238 |
+
|
239 |
+
# slow update
|
240 |
+
fast_update = 0
|
241 |
+
tmp_x = self.attn(self.norm1(x))
|
242 |
+
fast_update = fast_update + tmp_x[:, -1:]
|
243 |
+
x = x + self.drop_path(tmp_x)
|
244 |
+
tmp_x = self.mlp(self.norm2(x))
|
245 |
+
fast_update = fast_update + tmp_x[:, -1:]
|
246 |
+
x = x + self.drop_path(tmp_x)
|
247 |
+
# fast update
|
248 |
+
x_drop = x_drop + fast_update.expand(-1, N - N_, -1)
|
249 |
+
|
250 |
+
cls_token, x = x[:, :1, :], x[:, 1:-1, :]
|
251 |
+
if self.training:
|
252 |
+
x_sorted = torch.cat((x, x_drop), dim=1)
|
253 |
+
else:
|
254 |
+
x_sorted[:, N_:] = x_drop
|
255 |
+
x_sorted[:, :N_] = x
|
256 |
+
|
257 |
+
# recover token
|
258 |
+
# scale for normalization
|
259 |
+
old_global_scale = torch.sum(global_attn, dim=1, keepdim=True)
|
260 |
+
# recover order
|
261 |
+
indices = torch.argsort(token_indices, dim=1)
|
262 |
+
x_ga_ti = torch.cat((x_sorted, global_attn.unsqueeze(-1), token_indices.unsqueeze(-1)), dim=-1)
|
263 |
+
x_ga_ti = easy_gather(x_ga_ti, indices)
|
264 |
+
x_patch, global_attn, token_indices = x_ga_ti[:, :, :-2], x_ga_ti[:, :, -2], x_ga_ti[:, :, -1]
|
265 |
+
x_patch = x_patch.transpose(1, 2).reshape(B, C, T, H, W)
|
266 |
+
|
267 |
+
if self.downsample:
|
268 |
+
# downsample global attention
|
269 |
+
global_attn = global_attn.reshape(B, 1, T, H, W)
|
270 |
+
global_attn = self.avgpool(global_attn).view(B, -1)
|
271 |
+
# normalize global attention
|
272 |
+
new_global_scale = torch.sum(global_attn, dim=1, keepdim=True)
|
273 |
+
scale = old_global_scale / new_global_scale
|
274 |
+
global_attn = global_attn * scale
|
275 |
+
|
276 |
+
return cls_token, x_patch
|
277 |
+
|
278 |
+
|
279 |
+
class SABlock(nn.Module):
|
280 |
+
def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
|
281 |
+
drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm):
|
282 |
+
super().__init__()
|
283 |
+
self.pos_embed = conv_3x3x3(dim, dim, groups=dim)
|
284 |
+
self.norm1 = norm_layer(dim)
|
285 |
+
self.attn = Attention(
|
286 |
+
dim,
|
287 |
+
num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale,
|
288 |
+
attn_drop=attn_drop, proj_drop=drop)
|
289 |
+
# NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
|
290 |
+
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
291 |
+
self.norm2 = norm_layer(dim)
|
292 |
+
mlp_hidden_dim = int(dim * mlp_ratio)
|
293 |
+
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
|
294 |
+
|
295 |
+
def forward(self, x):
|
296 |
+
x = x + self.pos_embed(x)
|
297 |
+
B, C, T, H, W = x.shape
|
298 |
+
x = x.flatten(2).transpose(1, 2)
|
299 |
+
x = x + self.drop_path(self.attn(self.norm1(x)))
|
300 |
+
x = x + self.drop_path(self.mlp(self.norm2(x)))
|
301 |
+
x = x.transpose(1, 2).reshape(B, C, T, H, W)
|
302 |
+
return x
|
303 |
+
|
304 |
+
|
305 |
+
class SplitSABlock(nn.Module):
|
306 |
+
def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
|
307 |
+
drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm):
|
308 |
+
super().__init__()
|
309 |
+
self.pos_embed = conv_3x3x3(dim, dim, groups=dim)
|
310 |
+
self.t_norm = norm_layer(dim)
|
311 |
+
self.t_attn = Attention(
|
312 |
+
dim,
|
313 |
+
num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale,
|
314 |
+
attn_drop=attn_drop, proj_drop=drop)
|
315 |
+
self.norm1 = norm_layer(dim)
|
316 |
+
self.attn = Attention(
|
317 |
+
dim,
|
318 |
+
num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale,
|
319 |
+
attn_drop=attn_drop, proj_drop=drop)
|
320 |
+
# NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
|
321 |
+
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
322 |
+
self.norm2 = norm_layer(dim)
|
323 |
+
mlp_hidden_dim = int(dim * mlp_ratio)
|
324 |
+
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
|
325 |
+
|
326 |
+
def forward(self, x):
|
327 |
+
x = x + self.pos_embed(x)
|
328 |
+
B, C, T, H, W = x.shape
|
329 |
+
attn = x.view(B, C, T, H * W).permute(0, 3, 2, 1).contiguous()
|
330 |
+
attn = attn.view(B * H * W, T, C)
|
331 |
+
attn = attn + self.drop_path(self.t_attn(self.t_norm(attn)))
|
332 |
+
attn = attn.view(B, H * W, T, C).permute(0, 2, 1, 3).contiguous()
|
333 |
+
attn = attn.view(B * T, H * W, C)
|
334 |
+
residual = x.view(B, C, T, H * W).permute(0, 2, 3, 1).contiguous()
|
335 |
+
residual = residual.view(B * T, H * W, C)
|
336 |
+
attn = residual + self.drop_path(self.attn(self.norm1(attn)))
|
337 |
+
attn = attn.view(B, T * H * W, C)
|
338 |
+
out = attn + self.drop_path(self.mlp(self.norm2(attn)))
|
339 |
+
out = out.transpose(1, 2).reshape(B, C, T, H, W)
|
340 |
+
return out
|
341 |
+
|
342 |
+
|
343 |
+
class SpeicalPatchEmbed(nn.Module):
|
344 |
+
""" Image to Patch Embedding
|
345 |
+
"""
|
346 |
+
def __init__(self, patch_size=16, in_chans=3, embed_dim=768):
|
347 |
+
super().__init__()
|
348 |
+
patch_size = to_2tuple(patch_size)
|
349 |
+
self.patch_size = patch_size
|
350 |
+
|
351 |
+
self.proj = nn.Sequential(
|
352 |
+
nn.Conv3d(in_chans, embed_dim // 2, kernel_size=(3, 3, 3), stride=(1, 2, 2), padding=(1, 1, 1)),
|
353 |
+
nn.BatchNorm3d(embed_dim // 2),
|
354 |
+
nn.GELU(),
|
355 |
+
nn.Conv3d(embed_dim // 2, embed_dim, kernel_size=(3, 3, 3), stride=(2, 2, 2), padding=(1, 1, 1)),
|
356 |
+
nn.BatchNorm3d(embed_dim),
|
357 |
+
)
|
358 |
+
|
359 |
+
def forward(self, x):
|
360 |
+
B, C, T, H, W = x.shape
|
361 |
+
# FIXME look at relaxing size constraints
|
362 |
+
# assert H == self.img_size[0] and W == self.img_size[1], \
|
363 |
+
# f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})."
|
364 |
+
x = self.proj(x)
|
365 |
+
B, C, T, H, W = x.shape
|
366 |
+
x = x.flatten(2).transpose(1, 2)
|
367 |
+
x = x.reshape(B, T, H, W, -1).permute(0, 4, 1, 2, 3).contiguous()
|
368 |
+
return x
|
369 |
+
|
370 |
+
|
371 |
+
class PatchEmbed(nn.Module):
|
372 |
+
""" Image to Patch Embedding
|
373 |
+
"""
|
374 |
+
def __init__(self, patch_size=16, in_chans=3, embed_dim=768):
|
375 |
+
super().__init__()
|
376 |
+
patch_size = to_2tuple(patch_size)
|
377 |
+
self.patch_size = patch_size
|
378 |
+
self.norm = nn.LayerNorm(embed_dim)
|
379 |
+
self.proj = conv_1xnxn(in_chans, embed_dim, kernel_size=patch_size[0], stride=patch_size[0])
|
380 |
+
|
381 |
+
def forward(self, x):
|
382 |
+
B, C, T, H, W = x.shape
|
383 |
+
# FIXME look at relaxing size constraints
|
384 |
+
# assert H == self.img_size[0] and W == self.img_size[1], \
|
385 |
+
# f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})."
|
386 |
+
x = self.proj(x)
|
387 |
+
B, C, T, H, W = x.shape
|
388 |
+
x = x.flatten(2).transpose(1, 2)
|
389 |
+
x = self.norm(x)
|
390 |
+
x = x.reshape(B, T, H, W, -1).permute(0, 4, 1, 2, 3).contiguous()
|
391 |
+
return x
|
392 |
+
|
393 |
+
|
394 |
+
class Uniformer_light(nn.Module):
|
395 |
+
""" Vision Transformer
|
396 |
+
A PyTorch impl of : `An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale` -
|
397 |
+
https://arxiv.org/abs/2010.11929
|
398 |
+
"""
|
399 |
+
def __init__(self, depth=[3, 4, 8, 3], in_chans=3, num_classes=400, embed_dim=[64, 128, 320, 512],
|
400 |
+
head_dim=64, mlp_ratio=[4., 4., 4., 4.], qkv_bias=True, qk_scale=None, representation_size=None,
|
401 |
+
drop_rate=0., attn_drop_rate=0., drop_path_rate=0., norm_layer=None,
|
402 |
+
prune_ratio=[[], [], [1, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5], [0.5, 0.5, 0.5]],
|
403 |
+
trade_off=[[], [], [1, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5], [0.5, 0.5, 0.5]]
|
404 |
+
):
|
405 |
+
super().__init__()
|
406 |
+
|
407 |
+
self.num_classes = num_classes
|
408 |
+
self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models
|
409 |
+
norm_layer = partial(nn.LayerNorm, eps=1e-6)
|
410 |
+
|
411 |
+
self.patch_embed1 = SpeicalPatchEmbed(
|
412 |
+
patch_size=4, in_chans=in_chans, embed_dim=embed_dim[0])
|
413 |
+
self.patch_embed2 = PatchEmbed(
|
414 |
+
patch_size=2, in_chans=embed_dim[0], embed_dim=embed_dim[1])
|
415 |
+
self.patch_embed3 = PatchEmbed(
|
416 |
+
patch_size=2, in_chans=embed_dim[1], embed_dim=embed_dim[2])
|
417 |
+
self.patch_embed4 = PatchEmbed(
|
418 |
+
patch_size=2, in_chans=embed_dim[2], embed_dim=embed_dim[3])
|
419 |
+
|
420 |
+
# class token
|
421 |
+
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim[2]))
|
422 |
+
self.cls_upsample = nn.Linear(embed_dim[2], embed_dim[3])
|
423 |
+
|
424 |
+
self.pos_drop = nn.Dropout(p=drop_rate)
|
425 |
+
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depth))] # stochastic depth decay rule
|
426 |
+
num_heads = [dim // head_dim for dim in embed_dim]
|
427 |
+
self.blocks1 = nn.ModuleList([
|
428 |
+
CBlock(
|
429 |
+
dim=embed_dim[0], num_heads=num_heads[0], mlp_ratio=mlp_ratio[0], qkv_bias=qkv_bias, qk_scale=qk_scale,
|
430 |
+
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer)
|
431 |
+
for i in range(depth[0])])
|
432 |
+
self.blocks2 = nn.ModuleList([
|
433 |
+
CBlock(
|
434 |
+
dim=embed_dim[1], num_heads=num_heads[1], mlp_ratio=mlp_ratio[1], qkv_bias=qkv_bias, qk_scale=qk_scale,
|
435 |
+
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i+depth[0]], norm_layer=norm_layer)
|
436 |
+
for i in range(depth[1])])
|
437 |
+
self.blocks3 = nn.ModuleList([
|
438 |
+
EvoSABlock(
|
439 |
+
dim=embed_dim[2], num_heads=num_heads[2], mlp_ratio=mlp_ratio[3], qkv_bias=qkv_bias, qk_scale=qk_scale,
|
440 |
+
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i+depth[0]+depth[1]], norm_layer=norm_layer,
|
441 |
+
prune_ratio=prune_ratio[2][i], trade_off=trade_off[2][i],
|
442 |
+
downsample=True if i == depth[2] - 1 else False)
|
443 |
+
for i in range(depth[2])])
|
444 |
+
self.blocks4 = nn.ModuleList([
|
445 |
+
EvoSABlock(
|
446 |
+
dim=embed_dim[3], num_heads=num_heads[3], mlp_ratio=mlp_ratio[3], qkv_bias=qkv_bias, qk_scale=qk_scale,
|
447 |
+
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i+depth[0]+depth[1]+depth[2]], norm_layer=norm_layer,
|
448 |
+
prune_ratio=prune_ratio[3][i], trade_off=trade_off[3][i])
|
449 |
+
for i in range(depth[3])])
|
450 |
+
self.norm = bn_3d(embed_dim[-1])
|
451 |
+
self.norm_cls = nn.LayerNorm(embed_dim[-1])
|
452 |
+
|
453 |
+
# Representation layer
|
454 |
+
if representation_size:
|
455 |
+
self.num_features = representation_size
|
456 |
+
self.pre_logits = nn.Sequential(OrderedDict([
|
457 |
+
('fc', nn.Linear(embed_dim, representation_size)),
|
458 |
+
('act', nn.Tanh())
|
459 |
+
]))
|
460 |
+
else:
|
461 |
+
self.pre_logits = nn.Identity()
|
462 |
+
|
463 |
+
# Classifier head
|
464 |
+
self.head = nn.Linear(embed_dim[-1], num_classes) if num_classes > 0 else nn.Identity()
|
465 |
+
self.head_cls = nn.Linear(embed_dim[-1], num_classes) if num_classes > 0 else nn.Identity()
|
466 |
+
|
467 |
+
self.apply(self._init_weights)
|
468 |
+
|
469 |
+
for name, p in self.named_parameters():
|
470 |
+
# fill proj weight with 1 here to improve training dynamics. Otherwise temporal attention inputs
|
471 |
+
# are multiplied by 0*0, which is hard for the model to move out of.
|
472 |
+
if 't_attn.qkv.weight' in name:
|
473 |
+
nn.init.constant_(p, 0)
|
474 |
+
if 't_attn.qkv.bias' in name:
|
475 |
+
nn.init.constant_(p, 0)
|
476 |
+
if 't_attn.proj.weight' in name:
|
477 |
+
nn.init.constant_(p, 1)
|
478 |
+
if 't_attn.proj.bias' in name:
|
479 |
+
nn.init.constant_(p, 0)
|
480 |
+
|
481 |
+
def _init_weights(self, m):
|
482 |
+
if isinstance(m, nn.Linear):
|
483 |
+
trunc_normal_(m.weight, std=.02)
|
484 |
+
if isinstance(m, nn.Linear) and m.bias is not None:
|
485 |
+
nn.init.constant_(m.bias, 0)
|
486 |
+
elif isinstance(m, nn.LayerNorm):
|
487 |
+
nn.init.constant_(m.bias, 0)
|
488 |
+
nn.init.constant_(m.weight, 1.0)
|
489 |
+
|
490 |
+
@torch.jit.ignore
|
491 |
+
def no_weight_decay(self):
|
492 |
+
return {'pos_embed', 'cls_token'}
|
493 |
+
|
494 |
+
def get_classifier(self):
|
495 |
+
return self.head
|
496 |
+
|
497 |
+
def reset_classifier(self, num_classes, global_pool=''):
|
498 |
+
self.num_classes = num_classes
|
499 |
+
self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity()
|
500 |
+
|
501 |
+
def inflate_weight(self, weight_2d, time_dim, center=False):
|
502 |
+
if center:
|
503 |
+
weight_3d = torch.zeros(*weight_2d.shape)
|
504 |
+
weight_3d = weight_3d.unsqueeze(2).repeat(1, 1, time_dim, 1, 1)
|
505 |
+
middle_idx = time_dim // 2
|
506 |
+
weight_3d[:, :, middle_idx, :, :] = weight_2d
|
507 |
+
else:
|
508 |
+
weight_3d = weight_2d.unsqueeze(2).repeat(1, 1, time_dim, 1, 1)
|
509 |
+
weight_3d = weight_3d / time_dim
|
510 |
+
return weight_3d
|
511 |
+
|
512 |
+
def forward_features(self, x):
|
513 |
+
x = self.patch_embed1(x)
|
514 |
+
x = self.pos_drop(x)
|
515 |
+
for blk in self.blocks1:
|
516 |
+
x = blk(x)
|
517 |
+
x = self.patch_embed2(x)
|
518 |
+
for blk in self.blocks2:
|
519 |
+
x = blk(x)
|
520 |
+
x = self.patch_embed3(x)
|
521 |
+
# add cls_token in stage3
|
522 |
+
cls_token = self.cls_token.expand(x.shape[0], -1, -1)
|
523 |
+
global global_attn, token_indices
|
524 |
+
global_attn = 0
|
525 |
+
token_indices = torch.arange(x.shape[2] * x.shape[3] * x.shape[4], dtype=torch.long, device=x.device).unsqueeze(0)
|
526 |
+
token_indices = token_indices.expand(x.shape[0], -1)
|
527 |
+
for blk in self.blocks3:
|
528 |
+
cls_token, x = blk(cls_token, x)
|
529 |
+
# upsample cls_token before stage4
|
530 |
+
cls_token = self.cls_upsample(cls_token)
|
531 |
+
x = self.patch_embed4(x)
|
532 |
+
# whether reset global attention? Now simple avgpool
|
533 |
+
token_indices = torch.arange(x.shape[2] * x.shape[3] * x.shape[4], dtype=torch.long, device=x.device).unsqueeze(0)
|
534 |
+
token_indices = token_indices.expand(x.shape[0], -1)
|
535 |
+
for blk in self.blocks4:
|
536 |
+
cls_token, x = blk(cls_token, x)
|
537 |
+
if self.training:
|
538 |
+
# layer normalization for cls_token
|
539 |
+
cls_token = self.norm_cls(cls_token)
|
540 |
+
x = self.norm(x)
|
541 |
+
x = self.pre_logits(x)
|
542 |
+
return cls_token, x
|
543 |
+
|
544 |
+
def forward(self, x):
|
545 |
+
cls_token, x = self.forward_features(x)
|
546 |
+
x = x.flatten(2).mean(-1)
|
547 |
+
if self.training:
|
548 |
+
x = self.head(x), self.head_cls(cls_token.squeeze(1))
|
549 |
+
else:
|
550 |
+
x = self.head(x)
|
551 |
+
return x
|
552 |
+
|
553 |
+
|
554 |
+
def uniformer_xxs_video(**kwargs):
|
555 |
+
model = Uniformer_light(
|
556 |
+
depth=[2, 5, 8, 2],
|
557 |
+
prune_ratio=[[], [], [1, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5], [0.5, 0.5]],
|
558 |
+
trade_off=[[], [], [1, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5], [0.5, 0.5]],
|
559 |
+
embed_dim=[56, 112, 224, 448], head_dim=28, mlp_ratio=[3, 3, 3, 3], qkv_bias=True,
|
560 |
+
**kwargs)
|
561 |
+
model.default_cfg = _cfg()
|
562 |
+
return model
|
563 |
+
|
564 |
+
|
565 |
+
def uniformer_xs_video(**kwargs):
|
566 |
+
model = Uniformer_light(
|
567 |
+
depth=[3, 5, 9, 3],
|
568 |
+
prune_ratio=[[], [], [1, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5], [0.5, 0.5, 0.5]],
|
569 |
+
trade_off=[[], [], [1, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5], [0.5, 0.5, 0.5]],
|
570 |
+
embed_dim=[64, 128, 256, 512], head_dim=32, mlp_ratio=[3, 3, 3, 3], qkv_bias=True,
|
571 |
+
**kwargs)
|
572 |
+
model.default_cfg = _cfg()
|
573 |
+
return model
|
574 |
+
|
575 |
+
|
576 |
+
if __name__ == '__main__':
|
577 |
+
import time
|
578 |
+
from fvcore.nn import FlopCountAnalysis
|
579 |
+
from fvcore.nn import flop_count_table
|
580 |
+
import numpy as np
|
581 |
+
|
582 |
+
seed = 4217
|
583 |
+
np.random.seed(seed)
|
584 |
+
torch.manual_seed(seed)
|
585 |
+
torch.cuda.manual_seed(seed)
|
586 |
+
torch.cuda.manual_seed_all(seed)
|
587 |
+
num_frames = 16
|
588 |
+
|
589 |
+
model = uniformer_xxs_video()
|
590 |
+
# print(model)
|
591 |
+
|
592 |
+
flops = FlopCountAnalysis(model, torch.rand(1, 3, num_frames, 160, 160))
|
593 |
+
s = time.time()
|
594 |
+
print(flop_count_table(flops, max_depth=1))
|
595 |
+
print(time.time()-s)
|