ford442's picture
Update app.py
143174c verified
raw
history blame
6.52 kB
import spaces # If using Hugging Face Spaces
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig # Import BitsAndBytesConfig
import torch
import gradio as gr
import os
# --- Environment and PyTorch Configurations ---
os.putenv('TORCH_LINALG_PREFER_CUSOLVER','1')
os.putenv('PYTORCH_CUDA_ALLOC_CONF','max_split_size_mb:128')
os.environ["SAFETENSORS_FAST_GPU"] = "1"
os.putenv('HF_HUB_ENABLE_HF_TRANSFER','1')
torch.backends.cuda.matmul.allow_tf32 = False
torch.backends.cuda.matmul.allow_bf16_reduced_precision_reduction = False
torch.backends.cuda.matmul.allow_fp16_reduced_precision_reduction = False
torch.backends.cudnn.allow_tf32 = False
torch.backends.cudnn.deterministic = False
torch.backends.cudnn.benchmark = True
torch.set_float32_matmul_precision("highest")
# --- Model and Tokenizer Configuration ---
model_name = "FelixChao/vicuna-33b-coder"
# --- Quantization Configuration (Example: 4-bit) ---
# This section is included based on our previous discussion.
# Remove or comment out if you are not using quantization.
print("Setting up 4-bit quantization config...")
quantization_config_4bit = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.bfloat16
)
print(f"Loading model: {model_name} with quantization")
model = AutoModelForCausalLM.from_pretrained(
model_name,
quantization_config=quantization_config_4bit, # Comment out if not using quantization
device_map="auto",
)
print(f"Loading tokenizer: {model_name}")
tokenizer = AutoTokenizer.from_pretrained(
model_name,
use_fast=True
)
# ** MODIFICATION: Define and set the Vicuna chat template **
# ** DOCUMENTATION: Chat Template **
# Vicuna models expect a specific chat format. If the tokenizer doesn't have one
# built-in, we need to set it manually.
# This template handles a system prompt, user messages, and assistant responses.
# It will also add the "ASSISTANT:" prompt for generation if needed.
VICUNA_CHAT_TEMPLATE = (
"{% if messages[0]['role'] == 'system' %}" # Check if the first message is a system prompt
"{{ messages[0]['content'] + '\\n\\n' }}" # Add system prompt with two newlines
"{% set loop_messages = messages[1:] %}" # Slice to loop over remaining messages
"{% else %}"
"{% set loop_messages = messages %}" # No system prompt, loop over all messages
"{% endif %}"
"{% for message in loop_messages %}" # Loop through user and assistant messages
"{% if message['role'] == 'user' %}"
"{{ 'USER: ' + message['content'].strip() + '\\n' }}"
"{% elif message['role'] == 'assistant' %}"
"{{ 'ASSISTANT: ' + message['content'].strip() + eos_token + '\\n' }}"
"{% endif %}"
"{% endfor %}"
"{% if add_generation_prompt %}" # If we need to prompt the model for a response
"{% if messages[-1]['role'] != 'assistant' %}" # And the last message wasn't from the assistant
"{{ 'ASSISTANT:' }}" # Add the assistant prompt
"{% endif %}"
"{% endif %}"
)
tokenizer.chat_template = VICUNA_CHAT_TEMPLATE
print("Manually set Vicuna chat template on the tokenizer.")
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
# Also update the model config's pad_token_id if you are setting tokenizer.pad_token
# This is crucial if the model's config doesn't get updated automatically.
if model.config.pad_token_id is None:
model.config.pad_token_id = tokenizer.pad_token_id
print(f"Tokenizer `pad_token` was None, set to `eos_token`: {tokenizer.eos_token}")
@spaces.GPU(required=True)
def generate_code(prompt: str) -> str:
messages = [
{"role": "system", "content": "You are a helpful and proficient coding assistant."},
{"role": "user", "content": prompt}
]
try:
# ** DOCUMENTATION: Applying Chat Template **
# Now that tokenizer.chat_template is set, this should work.
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True # Important to append "ASSISTANT:"
)
print(f"Formatted prompt using chat template:\n{text}") # For debugging
except Exception as e:
print(f"Error applying chat template: {e}")
# Provide a more informative error or fallback if needed
return f"Error: Could not apply chat template. Details: {e}. Ensure the tokenizer has a valid `chat_template` attribute."
# Determine device for inputs if model is on multiple devices
# For device_map="auto", input tensors should go to the device of the first model block.
input_device = model.hf_device_map.get("", next(iter(model.hf_device_map.values()))) if hasattr(model, "hf_device_map") else model.device
model_inputs = tokenizer([text], return_tensors="pt").to(input_device)
with torch.no_grad():
generated_ids = model.generate(
**model_inputs, # Pass tokenized inputs
max_new_tokens=1024,
min_new_tokens=256,
do_sample=True,
temperature=0.7,
top_p=0.9,
pad_token_id=tokenizer.eos_token_id # Use EOS token for padding
)
response_ids = generated_ids[0][len(model_inputs.input_ids[0]):]
response = tokenizer.decode(response_ids, skip_special_tokens=True)
return response.strip()
# --- Gradio Interface ---
with gr.Blocks(title="Vicuna 33B Coder") as demo:
with gr.Tab("Code Chat"):
gr.Markdown("# Vicuna 33B Coder\nProvide a prompt to generate code.")
with gr.Row():
prompt_input = gr.Textbox( # Renamed to avoid conflict with 'prompt' variable in function scope
label="Prompt",
show_label=True,
lines=3,
placeholder="Enter your coding prompt here...",
)
run_button = gr.Button("Generate Code", variant="primary")
with gr.Row():
result_output = gr.Code( # Renamed
label="Generated Code",
show_label=True,
language="python",
lines=20,
)
gr.on(
triggers=[
run_button.click,
prompt_input.submit
],
fn=generate_code,
inputs=[prompt_input],
outputs=[result_output],
)
if __name__ == "__main__":
demo.launch(share=False, debug=True)