Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -4,8 +4,7 @@ import torch
|
|
4 |
import gradio as gr
|
5 |
import os
|
6 |
|
7 |
-
# --- Environment and PyTorch Configurations
|
8 |
-
# ... (rest of your os.putenv and torch.backends settings) ...
|
9 |
os.putenv('TORCH_LINALG_PREFER_CUSOLVER','1')
|
10 |
os.putenv('PYTORCH_CUDA_ALLOC_CONF','max_split_size_mb:128')
|
11 |
os.environ["SAFETENSORS_FAST_GPU"] = "1"
|
@@ -22,59 +21,68 @@ torch.set_float32_matmul_precision("highest")
|
|
22 |
# --- Model and Tokenizer Configuration ---
|
23 |
model_name = "FelixChao/vicuna-33b-coder"
|
24 |
|
25 |
-
#
|
26 |
-
#
|
27 |
-
#
|
28 |
-
|
29 |
-
# Example for 4-bit quantization:
|
30 |
print("Setting up 4-bit quantization config...")
|
31 |
quantization_config_4bit = BitsAndBytesConfig(
|
32 |
load_in_4bit=True,
|
33 |
-
bnb_4bit_use_double_quant=True,
|
34 |
-
bnb_4bit_quant_type="nf4",
|
35 |
-
bnb_4bit_compute_dtype=torch.bfloat16
|
36 |
-
# bfloat16 is good if your GPU supports it (Ampere series onwards)
|
37 |
)
|
38 |
|
39 |
-
# Example for 8-bit quantization (if you prefer that over 4-bit):
|
40 |
-
# print("Setting up 8-bit quantization config...")
|
41 |
-
# quantization_config_8bit = BitsAndBytesConfig(
|
42 |
-
# load_in_8bit=True
|
43 |
-
# )
|
44 |
-
|
45 |
-
# ** DOCUMENTATION: Model Loading with Quantization **
|
46 |
print(f"Loading model: {model_name} with quantization")
|
47 |
model = AutoModelForCausalLM.from_pretrained(
|
48 |
model_name,
|
49 |
-
quantization_config=quantization_config_4bit, #
|
50 |
-
device_map="auto",
|
51 |
-
# It automatically distributes the model across available GPUs/CPU memory as needed.
|
52 |
-
# Do NOT use .to('cuda') after this when using device_map="auto" with quantization.
|
53 |
-
# torch_dtype="auto", # With device_map="auto" and quantization, dtype is often handled,
|
54 |
-
# but bnb_4bit_compute_dtype in BitsAndBytesConfig specifies compute precision.
|
55 |
-
# trust_remote_code=True # As discussed, generally not needed for Vicuna
|
56 |
)
|
57 |
|
58 |
print(f"Loading tokenizer: {model_name}")
|
59 |
tokenizer = AutoTokenizer.from_pretrained(
|
60 |
model_name,
|
61 |
-
# trust_remote_code=True,
|
62 |
use_fast=True
|
63 |
)
|
64 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
if tokenizer.pad_token is None:
|
66 |
tokenizer.pad_token = tokenizer.eos_token
|
|
|
|
|
|
|
|
|
67 |
print(f"Tokenizer `pad_token` was None, set to `eos_token`: {tokenizer.eos_token}")
|
68 |
|
69 |
-
# Note: model.config.pad_token_id is usually set by the tokenizer or handled by generate.
|
70 |
-
# If using device_map, the model might not have a single `model.device` attribute in the traditional sense
|
71 |
-
# if it's spread across devices. model_inputs should still be moved to the device of the first layer,
|
72 |
-
# which `generate` often handles, or you can query input_device = model.hf_device_map[""] (for the first block)
|
73 |
-
# and .to(input_device)
|
74 |
-
|
75 |
-
# ... (rest of your generate_code function and Gradio app code) ...
|
76 |
-
# Make sure to adjust the device placement for model_inputs if needed,
|
77 |
-
# though often `model.generate` handles this correctly when `device_map` is used.
|
78 |
|
79 |
@spaces.GPU(required=True)
|
80 |
def generate_code(prompt: str) -> str:
|
@@ -83,76 +91,67 @@ def generate_code(prompt: str) -> str:
|
|
83 |
{"role": "user", "content": prompt}
|
84 |
]
|
85 |
try:
|
|
|
|
|
86 |
text = tokenizer.apply_chat_template(
|
87 |
messages,
|
88 |
tokenize=False,
|
89 |
-
add_generation_prompt=True
|
90 |
)
|
|
|
91 |
except Exception as e:
|
92 |
print(f"Error applying chat template: {e}")
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
#
|
97 |
-
#
|
98 |
-
|
99 |
-
# If you face issues, you might need to explicitly find the input device:
|
100 |
-
# input_device = model.hf_device_map.get("", "cuda:0") # Get device of first module or default
|
101 |
-
# model_inputs = tokenizer([text], return_tensors="pt").to(input_device)
|
102 |
-
# For now, let's assume .to(model.device) works or generate handles it.
|
103 |
-
# If model.device is not available due to device_map, remove .to(model.device)
|
104 |
-
# and let `generate` handle it, or use the hf_device_map.
|
105 |
-
|
106 |
-
# Since device_map="auto" is used, the model might be on multiple devices.
|
107 |
-
# We don't need to explicitly move model_inputs to model.device here,
|
108 |
-
# as the `generate` function should handle it correctly with `device_map`.
|
109 |
-
model_inputs = tokenizer([text], return_tensors="pt")
|
110 |
|
|
|
111 |
|
112 |
with torch.no_grad():
|
113 |
generated_ids = model.generate(
|
114 |
-
|
115 |
-
attention_mask=model_inputs.attention_mask.to(model.device if hasattr(model, "device") else model.hf_device_map[""]), # Ensure attention_mask is on the correct device
|
116 |
max_new_tokens=1024,
|
117 |
min_new_tokens=256,
|
118 |
do_sample=True,
|
119 |
temperature=0.7,
|
120 |
top_p=0.9,
|
121 |
-
pad_token_id=tokenizer.eos_token_id
|
122 |
)
|
123 |
|
124 |
-
# The rest of your generate_code function for decoding should be fine
|
125 |
response_ids = generated_ids[0][len(model_inputs.input_ids[0]):]
|
126 |
response = tokenizer.decode(response_ids, skip_special_tokens=True)
|
127 |
return response.strip()
|
128 |
|
129 |
-
# --- Gradio Interface
|
130 |
-
with gr.Blocks(title="Vicuna 33B Coder") as demo:
|
131 |
with gr.Tab("Code Chat"):
|
132 |
gr.Markdown("# Vicuna 33B Coder\nProvide a prompt to generate code.")
|
133 |
with gr.Row():
|
134 |
-
|
135 |
label="Prompt",
|
136 |
-
show_label=True,
|
137 |
-
lines=3,
|
138 |
placeholder="Enter your coding prompt here...",
|
139 |
)
|
140 |
run_button = gr.Button("Generate Code", variant="primary")
|
141 |
with gr.Row():
|
142 |
-
|
143 |
label="Generated Code",
|
144 |
-
show_label=True,
|
145 |
-
language="python",
|
146 |
lines=20,
|
147 |
)
|
148 |
gr.on(
|
149 |
triggers=[
|
150 |
run_button.click,
|
151 |
-
|
152 |
],
|
153 |
fn=generate_code,
|
154 |
-
inputs=[
|
155 |
-
outputs=[
|
156 |
)
|
157 |
|
158 |
if __name__ == "__main__":
|
|
|
4 |
import gradio as gr
|
5 |
import os
|
6 |
|
7 |
+
# --- Environment and PyTorch Configurations ---
|
|
|
8 |
os.putenv('TORCH_LINALG_PREFER_CUSOLVER','1')
|
9 |
os.putenv('PYTORCH_CUDA_ALLOC_CONF','max_split_size_mb:128')
|
10 |
os.environ["SAFETENSORS_FAST_GPU"] = "1"
|
|
|
21 |
# --- Model and Tokenizer Configuration ---
|
22 |
model_name = "FelixChao/vicuna-33b-coder"
|
23 |
|
24 |
+
# --- Quantization Configuration (Example: 4-bit) ---
|
25 |
+
# This section is included based on our previous discussion.
|
26 |
+
# Remove or comment out if you are not using quantization.
|
|
|
|
|
27 |
print("Setting up 4-bit quantization config...")
|
28 |
quantization_config_4bit = BitsAndBytesConfig(
|
29 |
load_in_4bit=True,
|
30 |
+
bnb_4bit_use_double_quant=True,
|
31 |
+
bnb_4bit_quant_type="nf4",
|
32 |
+
bnb_4bit_compute_dtype=torch.bfloat16
|
|
|
33 |
)
|
34 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
print(f"Loading model: {model_name} with quantization")
|
36 |
model = AutoModelForCausalLM.from_pretrained(
|
37 |
model_name,
|
38 |
+
quantization_config=quantization_config_4bit, # Comment out if not using quantization
|
39 |
+
device_map="auto",
|
|
|
|
|
|
|
|
|
|
|
40 |
)
|
41 |
|
42 |
print(f"Loading tokenizer: {model_name}")
|
43 |
tokenizer = AutoTokenizer.from_pretrained(
|
44 |
model_name,
|
|
|
45 |
use_fast=True
|
46 |
)
|
47 |
|
48 |
+
# ** MODIFICATION: Define and set the Vicuna chat template **
|
49 |
+
# ** DOCUMENTATION: Chat Template **
|
50 |
+
# Vicuna models expect a specific chat format. If the tokenizer doesn't have one
|
51 |
+
# built-in, we need to set it manually.
|
52 |
+
# This template handles a system prompt, user messages, and assistant responses.
|
53 |
+
# It will also add the "ASSISTANT:" prompt for generation if needed.
|
54 |
+
VICUNA_CHAT_TEMPLATE = (
|
55 |
+
"{% if messages[0]['role'] == 'system' %}" # Check if the first message is a system prompt
|
56 |
+
"{{ messages[0]['content'] + '\\n\\n' }}" # Add system prompt with two newlines
|
57 |
+
"{% set loop_messages = messages[1:] %}" # Slice to loop over remaining messages
|
58 |
+
"{% else %}"
|
59 |
+
"{% set loop_messages = messages %}" # No system prompt, loop over all messages
|
60 |
+
"{% endif %}"
|
61 |
+
"{% for message in loop_messages %}" # Loop through user and assistant messages
|
62 |
+
"{% if message['role'] == 'user' %}"
|
63 |
+
"{{ 'USER: ' + message['content'].strip() + '\\n' }}"
|
64 |
+
"{% elif message['role'] == 'assistant' %}"
|
65 |
+
"{{ 'ASSISTANT: ' + message['content'].strip() + eos_token + '\\n' }}"
|
66 |
+
"{% endif %}"
|
67 |
+
"{% endfor %}"
|
68 |
+
"{% if add_generation_prompt %}" # If we need to prompt the model for a response
|
69 |
+
"{% if messages[-1]['role'] != 'assistant' %}" # And the last message wasn't from the assistant
|
70 |
+
"{{ 'ASSISTANT:' }}" # Add the assistant prompt
|
71 |
+
"{% endif %}"
|
72 |
+
"{% endif %}"
|
73 |
+
)
|
74 |
+
tokenizer.chat_template = VICUNA_CHAT_TEMPLATE
|
75 |
+
print("Manually set Vicuna chat template on the tokenizer.")
|
76 |
+
|
77 |
+
|
78 |
if tokenizer.pad_token is None:
|
79 |
tokenizer.pad_token = tokenizer.eos_token
|
80 |
+
# Also update the model config's pad_token_id if you are setting tokenizer.pad_token
|
81 |
+
# This is crucial if the model's config doesn't get updated automatically.
|
82 |
+
if model.config.pad_token_id is None:
|
83 |
+
model.config.pad_token_id = tokenizer.pad_token_id
|
84 |
print(f"Tokenizer `pad_token` was None, set to `eos_token`: {tokenizer.eos_token}")
|
85 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
86 |
|
87 |
@spaces.GPU(required=True)
|
88 |
def generate_code(prompt: str) -> str:
|
|
|
91 |
{"role": "user", "content": prompt}
|
92 |
]
|
93 |
try:
|
94 |
+
# ** DOCUMENTATION: Applying Chat Template **
|
95 |
+
# Now that tokenizer.chat_template is set, this should work.
|
96 |
text = tokenizer.apply_chat_template(
|
97 |
messages,
|
98 |
tokenize=False,
|
99 |
+
add_generation_prompt=True # Important to append "ASSISTANT:"
|
100 |
)
|
101 |
+
print(f"Formatted prompt using chat template:\n{text}") # For debugging
|
102 |
except Exception as e:
|
103 |
print(f"Error applying chat template: {e}")
|
104 |
+
# Provide a more informative error or fallback if needed
|
105 |
+
return f"Error: Could not apply chat template. Details: {e}. Ensure the tokenizer has a valid `chat_template` attribute."
|
106 |
+
|
107 |
+
# Determine device for inputs if model is on multiple devices
|
108 |
+
# For device_map="auto", input tensors should go to the device of the first model block.
|
109 |
+
input_device = model.hf_device_map.get("", next(iter(model.hf_device_map.values()))) if hasattr(model, "hf_device_map") else model.device
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
110 |
|
111 |
+
model_inputs = tokenizer([text], return_tensors="pt").to(input_device)
|
112 |
|
113 |
with torch.no_grad():
|
114 |
generated_ids = model.generate(
|
115 |
+
**model_inputs, # Pass tokenized inputs
|
|
|
116 |
max_new_tokens=1024,
|
117 |
min_new_tokens=256,
|
118 |
do_sample=True,
|
119 |
temperature=0.7,
|
120 |
top_p=0.9,
|
121 |
+
pad_token_id=tokenizer.eos_token_id # Use EOS token for padding
|
122 |
)
|
123 |
|
|
|
124 |
response_ids = generated_ids[0][len(model_inputs.input_ids[0]):]
|
125 |
response = tokenizer.decode(response_ids, skip_special_tokens=True)
|
126 |
return response.strip()
|
127 |
|
128 |
+
# --- Gradio Interface ---
|
129 |
+
with gr.Blocks(title="Vicuna 33B Coder") as demo:
|
130 |
with gr.Tab("Code Chat"):
|
131 |
gr.Markdown("# Vicuna 33B Coder\nProvide a prompt to generate code.")
|
132 |
with gr.Row():
|
133 |
+
prompt_input = gr.Textbox( # Renamed to avoid conflict with 'prompt' variable in function scope
|
134 |
label="Prompt",
|
135 |
+
show_label=True,
|
136 |
+
lines=3,
|
137 |
placeholder="Enter your coding prompt here...",
|
138 |
)
|
139 |
run_button = gr.Button("Generate Code", variant="primary")
|
140 |
with gr.Row():
|
141 |
+
result_output = gr.Code( # Renamed
|
142 |
label="Generated Code",
|
143 |
+
show_label=True,
|
144 |
+
language="python",
|
145 |
lines=20,
|
146 |
)
|
147 |
gr.on(
|
148 |
triggers=[
|
149 |
run_button.click,
|
150 |
+
prompt_input.submit
|
151 |
],
|
152 |
fn=generate_code,
|
153 |
+
inputs=[prompt_input],
|
154 |
+
outputs=[result_output],
|
155 |
)
|
156 |
|
157 |
if __name__ == "__main__":
|