Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -20,6 +20,13 @@ dataset = dataset.map(tokenize_function, batched=True)
|
|
20 |
# Schritt 3: Modell laden
|
21 |
model = AutoModelForSequenceClassification.from_pretrained("allenai/scibert_scivocab_uncased", num_labels=3)
|
22 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
# Schritt 4: Trainingsparameter setzen
|
24 |
training_args = TrainingArguments(
|
25 |
output_dir="./results",
|
@@ -39,6 +46,7 @@ trainer = Trainer(
|
|
39 |
args=training_args,
|
40 |
train_dataset=dataset["train"],
|
41 |
eval_dataset=dataset["validation"],
|
|
|
42 |
)
|
43 |
trainer.train()
|
44 |
|
|
|
20 |
# Schritt 3: Modell laden
|
21 |
model = AutoModelForSequenceClassification.from_pretrained("allenai/scibert_scivocab_uncased", num_labels=3)
|
22 |
|
23 |
+
# Anpassung für Trainingsdaten: Label-Spalte hinzufügen
|
24 |
+
def add_labels(example):
|
25 |
+
example["labels"] = 1 # Dummy-Label, falls nicht vorhanden (1=positiv, 0=negativ, 2=neutral o.Ä.)
|
26 |
+
return example
|
27 |
+
|
28 |
+
dataset = dataset.map(add_labels)
|
29 |
+
|
30 |
# Schritt 4: Trainingsparameter setzen
|
31 |
training_args = TrainingArguments(
|
32 |
output_dir="./results",
|
|
|
46 |
args=training_args,
|
47 |
train_dataset=dataset["train"],
|
48 |
eval_dataset=dataset["validation"],
|
49 |
+
compute_loss=lambda model, inputs: model(**inputs).loss # Fix für fehlende Loss-Berechnung
|
50 |
)
|
51 |
trainer.train()
|
52 |
|