flytoe commited on
Commit
8a0298f
·
verified ·
1 Parent(s): cb329a5

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +3 -3
app.py CHANGED
@@ -13,7 +13,7 @@ print(dataset)
13
  tokenizer = AutoTokenizer.from_pretrained("allenai/scibert_scivocab_uncased")
14
 
15
  def tokenize_function(examples):
16
- return tokenizer(examples["abstract"], padding="max_length", truncation=True)
17
 
18
  dataset = dataset.map(tokenize_function, batched=True)
19
 
@@ -23,7 +23,7 @@ model = AutoModelForSequenceClassification.from_pretrained("allenai/scibert_sciv
23
  # Schritt 4: Trainingsparameter setzen
24
  training_args = TrainingArguments(
25
  output_dir="./results",
26
- evaluation_strategy="epoch",
27
  per_device_train_batch_size=8,
28
  per_device_eval_batch_size=8,
29
  num_train_epochs=3,
@@ -48,7 +48,7 @@ tokenizer.save_pretrained("./trained_model")
48
 
49
  # Schritt 7: Modell für Gradio bereitstellen
50
  def predict(text):
51
- inputs = tokenizer(text, return_tensors="pt", truncation=True, padding="max_length", max_length=512)
52
  with torch.no_grad():
53
  outputs = model(**inputs)
54
  logits = outputs.logits
 
13
  tokenizer = AutoTokenizer.from_pretrained("allenai/scibert_scivocab_uncased")
14
 
15
  def tokenize_function(examples):
16
+ return tokenizer(examples["abstract"], padding="max_length", truncation=True, max_length=151)
17
 
18
  dataset = dataset.map(tokenize_function, batched=True)
19
 
 
23
  # Schritt 4: Trainingsparameter setzen
24
  training_args = TrainingArguments(
25
  output_dir="./results",
26
+ eval_strategy="epoch",
27
  per_device_train_batch_size=8,
28
  per_device_eval_batch_size=8,
29
  num_train_epochs=3,
 
48
 
49
  # Schritt 7: Modell für Gradio bereitstellen
50
  def predict(text):
51
+ inputs = tokenizer(text, return_tensors="pt", truncation=True, padding="max_length", max_length=151)
52
  with torch.no_grad():
53
  outputs = model(**inputs)
54
  logits = outputs.logits