Spaces:
Runtime error
Runtime error
from datasets import load_dataset | |
from transformers import AutoTokenizer, AutoModelForSequenceClassification, TrainingArguments, Trainer | |
import gradio as gr | |
import torch | |
# Schritt 1: Dataset laden und überprüfen | |
# Falls "KeyError: 'text'" auftritt, Spaltennamen prüfen | |
dataset = load_dataset("armanc/scientific_papers", "arxiv", trust_remote_code=True) # Falls du PubMed nutzt, ersetze "arxiv" mit "pubmed" | |
print(dataset) | |
# Schritt 2: Tokenizer vorbereiten | |
tokenizer = AutoTokenizer.from_pretrained("allenai/scibert_scivocab_uncased") | |
def tokenize_function(examples): | |
return tokenizer(examples["abstract"], padding="max_length", truncation=True, max_length=151) | |
dataset = dataset.map(tokenize_function, batched=True) | |
# Schritt 3: Modell laden | |
model = AutoModelForSequenceClassification.from_pretrained("allenai/scibert_scivocab_uncased", num_labels=3) | |
# Anpassung für Trainingsdaten: Label-Spalte hinzufügen | |
def add_labels(example): | |
example["labels"] = 1 # Dummy-Label, falls nicht vorhanden (1=positiv, 0=negativ, 2=neutral o.Ä.) | |
return example | |
dataset = dataset.map(add_labels) | |
# Schritt 4: Trainingsparameter setzen | |
training_args = TrainingArguments( | |
output_dir="./results", | |
eval_strategy="epoch", | |
per_device_train_batch_size=8, | |
per_device_eval_batch_size=8, | |
num_train_epochs=3, | |
learning_rate=5e-5, | |
weight_decay=0.01, | |
logging_dir="./logs", | |
logging_steps=500, | |
) | |
# Schritt 5: Trainer erstellen und Training starten | |
trainer = Trainer( | |
model=model, | |
args=training_args, | |
train_dataset=dataset["train"], | |
eval_dataset=dataset["validation"] | |
) | |
trainer.train() | |
# Schritt 6: Modell speichern | |
trainer.save_model("./trained_model") | |
tokenizer.save_pretrained("./trained_model") | |
# Schritt 7: Modell für Gradio bereitstellen | |
def predict(text): | |
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding="max_length", max_length=151) | |
with torch.no_grad(): | |
outputs = model(**inputs) | |
logits = outputs.logits | |
probabilities = torch.nn.functional.softmax(logits, dim=-1) | |
return {f"Label {i}": float(probabilities[0][i]) for i in range(len(probabilities[0]))} | |
iface = gr.Interface( | |
fn=predict, | |
inputs=gr.Textbox(lines=5, placeholder="Paste an abstract here..."), | |
outputs=gr.Label(), | |
title="Scientific Paper Evaluator", | |
description="This AI model scores scientific papers based on relevance, uniqueness, and redundancy." | |
) | |
iface.launch() | |