from datasets import load_dataset from transformers import AutoTokenizer, AutoModelForSequenceClassification, TrainingArguments, Trainer import gradio as gr import torch # Schritt 1: Dataset laden und überprüfen # Falls "KeyError: 'text'" auftritt, Spaltennamen prüfen dataset = load_dataset("armanc/scientific_papers", "arxiv", trust_remote_code=True) # Falls du PubMed nutzt, ersetze "arxiv" mit "pubmed" print(dataset) # Schritt 2: Tokenizer vorbereiten tokenizer = AutoTokenizer.from_pretrained("allenai/scibert_scivocab_uncased") def tokenize_function(examples): return tokenizer(examples["abstract"], padding="max_length", truncation=True, max_length=151) dataset = dataset.map(tokenize_function, batched=True) # Schritt 3: Modell laden model = AutoModelForSequenceClassification.from_pretrained("allenai/scibert_scivocab_uncased", num_labels=3) # Anpassung für Trainingsdaten: Label-Spalte hinzufügen def add_labels(example): example["labels"] = 1 # Dummy-Label, falls nicht vorhanden (1=positiv, 0=negativ, 2=neutral o.Ä.) return example dataset = dataset.map(add_labels) # Schritt 4: Trainingsparameter setzen training_args = TrainingArguments( output_dir="./results", eval_strategy="epoch", per_device_train_batch_size=8, per_device_eval_batch_size=8, num_train_epochs=3, learning_rate=5e-5, weight_decay=0.01, logging_dir="./logs", logging_steps=500, ) # Schritt 5: Trainer erstellen und Training starten trainer = Trainer( model=model, args=training_args, train_dataset=dataset["train"], eval_dataset=dataset["validation"] ) trainer.train() # Schritt 6: Modell speichern trainer.save_model("./trained_model") tokenizer.save_pretrained("./trained_model") # Schritt 7: Modell für Gradio bereitstellen def predict(text): inputs = tokenizer(text, return_tensors="pt", truncation=True, padding="max_length", max_length=151) with torch.no_grad(): outputs = model(**inputs) logits = outputs.logits probabilities = torch.nn.functional.softmax(logits, dim=-1) return {f"Label {i}": float(probabilities[0][i]) for i in range(len(probabilities[0]))} iface = gr.Interface( fn=predict, inputs=gr.Textbox(lines=5, placeholder="Paste an abstract here..."), outputs=gr.Label(), title="Scientific Paper Evaluator", description="This AI model scores scientific papers based on relevance, uniqueness, and redundancy." ) iface.launch()