Spaces:
Runtime error
Runtime error
File size: 2,187 Bytes
b6a1553 c942b0f 3e7c541 c942b0f 3e7c541 c942b0f 3e7c541 b6a1553 c942b0f 3e7c541 c942b0f 3e7c541 c942b0f b6a1553 c942b0f b6a1553 c942b0f b6a1553 c942b0f b6a1553 c942b0f b6a1553 c942b0f b6a1553 c942b0f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 |
from datasets import load_dataset
from transformers import AutoTokenizer, AutoModelForSequenceClassification, TrainingArguments, Trainer
import gradio as gr
import torch
# Schritt 1: Dataset laden und überprüfen
# Falls "KeyError: 'text'" auftritt, Spaltennamen prüfen
dataset = load_dataset("armanc/scientific_papers", "arxiv") # Falls du PubMed nutzt, ersetze "arxiv" mit "pubmed"
print(dataset)
# Schritt 2: Tokenizer vorbereiten
tokenizer = AutoTokenizer.from_pretrained("allenai/scibert_scivocab_uncased")
def tokenize_function(examples):
return tokenizer(examples["abstract"], padding="max_length", truncation=True)
dataset = dataset.map(tokenize_function, batched=True)
# Schritt 3: Modell laden
model = AutoModelForSequenceClassification.from_pretrained("allenai/scibert_scivocab_uncased", num_labels=3)
# Schritt 4: Trainingsparameter setzen
training_args = TrainingArguments(
output_dir="./results",
evaluation_strategy="epoch",
per_device_train_batch_size=8,
per_device_eval_batch_size=8,
num_train_epochs=3,
learning_rate=5e-5,
weight_decay=0.01,
logging_dir="./logs",
logging_steps=500,
)
# Schritt 5: Trainer erstellen und Training starten
trainer = Trainer(
model=model,
args=training_args,
train_dataset=dataset["train"],
eval_dataset=dataset["validation"],
)
trainer.train()
# Schritt 6: Modell speichern
trainer.save_model("./trained_model")
tokenizer.save_pretrained("./trained_model")
# Schritt 7: Modell für Gradio bereitstellen
def predict(text):
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding="max_length", max_length=512)
with torch.no_grad():
outputs = model(**inputs)
logits = outputs.logits
probabilities = torch.nn.functional.softmax(logits, dim=-1)
return {f"Label {i}": float(probabilities[0][i]) for i in range(len(probabilities[0]))}
iface = gr.Interface(
fn=predict,
inputs=gr.Textbox(lines=5, placeholder="Paste an abstract here..."),
outputs=gr.Label(),
title="Scientific Paper Evaluator",
description="This AI model scores scientific papers based on relevance, uniqueness, and redundancy."
)
iface.launch() |