Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,21 +1,45 @@
|
|
1 |
import torch
|
2 |
-
from transformers import
|
|
|
3 |
|
4 |
-
# Modell & Tokenizer laden
|
5 |
model_name = "allenai/scibert_scivocab_uncased"
|
6 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
7 |
-
model =
|
8 |
|
9 |
-
#
|
10 |
-
|
11 |
-
model.to(device)
|
12 |
|
13 |
-
#
|
14 |
-
|
|
|
15 |
|
16 |
-
|
17 |
-
inputs = tokenizer(text, return_tensors="pt").to(device)
|
18 |
-
outputs = model(**inputs)
|
19 |
|
20 |
-
|
21 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import torch
|
2 |
+
from transformers import AutoModelForSequenceClassification, Trainer, TrainingArguments, AutoTokenizer
|
3 |
+
from datasets import load_dataset
|
4 |
|
5 |
+
# 1️⃣ Modell & Tokenizer laden
|
6 |
model_name = "allenai/scibert_scivocab_uncased"
|
7 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
8 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_name, num_labels=3) # z.B. für 3 Kategorien
|
9 |
|
10 |
+
# 2️⃣ Dataset laden (ersetze mit deinem Dataset)
|
11 |
+
dataset = load_dataset("scientific_papers", "arxiv") # Hugging Face Datasets
|
|
|
12 |
|
13 |
+
# 3️⃣ Tokenisierung der Texte
|
14 |
+
def tokenize_function(examples):
|
15 |
+
return tokenizer(examples["abstract"], padding="max_length", truncation=True)
|
16 |
|
17 |
+
tokenized_datasets = dataset.map(tokenize_function, batched=True)
|
|
|
|
|
18 |
|
19 |
+
# 4️⃣ Trainingsparameter setzen
|
20 |
+
training_args = TrainingArguments(
|
21 |
+
output_dir="./results",
|
22 |
+
evaluation_strategy="epoch",
|
23 |
+
save_strategy="epoch",
|
24 |
+
per_device_train_batch_size=8,
|
25 |
+
per_device_eval_batch_size=8,
|
26 |
+
num_train_epochs=3,
|
27 |
+
weight_decay=0.01,
|
28 |
+
logging_dir="./logs",
|
29 |
+
)
|
30 |
+
|
31 |
+
# 5️⃣ Training starten
|
32 |
+
trainer = Trainer(
|
33 |
+
model=model,
|
34 |
+
args=training_args,
|
35 |
+
train_dataset=tokenized_datasets["train"],
|
36 |
+
eval_dataset=tokenized_datasets["validation"],
|
37 |
+
)
|
38 |
+
|
39 |
+
trainer.train()
|
40 |
+
|
41 |
+
# 6️⃣ Speichern des Modells nach dem Training
|
42 |
+
model.save_pretrained("./trained_model")
|
43 |
+
tokenizer.save_pretrained("./trained_model")
|
44 |
+
|
45 |
+
print("✅ Training abgeschlossen! Modell gespeichert.")
|