Spaces:
Running
Running
# Copyright 2025 the LlamaFactory team. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import pytest | |
import torch | |
from transformers import AutoConfig, AutoModelForVision2Seq | |
from llamafactory.hparams import FinetuningArguments, ModelArguments | |
from llamafactory.model.adapter import init_adapter | |
def test_visual_full(freeze_vision_tower: bool, freeze_multi_modal_projector: bool, freeze_language_model: bool): | |
model_args = ModelArguments(model_name_or_path="Qwen/Qwen2-VL-2B-Instruct") | |
finetuning_args = FinetuningArguments( | |
finetuning_type="full", | |
freeze_vision_tower=freeze_vision_tower, | |
freeze_multi_modal_projector=freeze_multi_modal_projector, | |
freeze_language_model=freeze_language_model, | |
) | |
config = AutoConfig.from_pretrained(model_args.model_name_or_path) | |
with torch.device("meta"): | |
model = AutoModelForVision2Seq.from_config(config) | |
model = init_adapter(config, model, model_args, finetuning_args, is_trainable=True) | |
for name, param in model.named_parameters(): | |
if any(key in name for key in ["visual.patch_embed", "visual.blocks"]): | |
assert param.requires_grad != freeze_vision_tower | |
elif "visual.merger" in name: | |
assert param.requires_grad != freeze_multi_modal_projector | |
else: | |
assert param.requires_grad != freeze_language_model | |
def test_visual_lora(freeze_vision_tower: bool): | |
model_args = ModelArguments(model_name_or_path="Qwen/Qwen2-VL-2B-Instruct") | |
finetuning_args = FinetuningArguments(finetuning_type="lora", freeze_vision_tower=freeze_vision_tower) | |
config = AutoConfig.from_pretrained(model_args.model_name_or_path) | |
with torch.device("meta"): | |
model = AutoModelForVision2Seq.from_config(config) | |
model = init_adapter(config, model, model_args, finetuning_args, is_trainable=True) | |
trainable_params, frozen_params = set(), set() | |
for name, param in model.named_parameters(): | |
if param.requires_grad: | |
trainable_params.add(name) | |
else: | |
frozen_params.add(name) | |
if freeze_vision_tower: | |
assert "base_model.model.visual.blocks.0.attn.qkv.lora_A.default.weight" not in trainable_params | |
else: | |
assert "base_model.model.visual.blocks.0.attn.qkv.lora_A.default.weight" in trainable_params | |
assert "merger" not in trainable_params | |
assert "base_model.model.model.layers.0.self_attn.q_proj.lora_A.default.weight" in trainable_params | |