# Copyright 2025 the LlamaFactory team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pytest import torch from transformers import AutoConfig, AutoModelForVision2Seq from llamafactory.hparams import FinetuningArguments, ModelArguments from llamafactory.model.adapter import init_adapter @pytest.mark.parametrize("freeze_vision_tower", (False, True)) @pytest.mark.parametrize("freeze_multi_modal_projector", (False, True)) @pytest.mark.parametrize("freeze_language_model", (False, True)) def test_visual_full(freeze_vision_tower: bool, freeze_multi_modal_projector: bool, freeze_language_model: bool): model_args = ModelArguments(model_name_or_path="Qwen/Qwen2-VL-2B-Instruct") finetuning_args = FinetuningArguments( finetuning_type="full", freeze_vision_tower=freeze_vision_tower, freeze_multi_modal_projector=freeze_multi_modal_projector, freeze_language_model=freeze_language_model, ) config = AutoConfig.from_pretrained(model_args.model_name_or_path) with torch.device("meta"): model = AutoModelForVision2Seq.from_config(config) model = init_adapter(config, model, model_args, finetuning_args, is_trainable=True) for name, param in model.named_parameters(): if any(key in name for key in ["visual.patch_embed", "visual.blocks"]): assert param.requires_grad != freeze_vision_tower elif "visual.merger" in name: assert param.requires_grad != freeze_multi_modal_projector else: assert param.requires_grad != freeze_language_model @pytest.mark.parametrize("freeze_vision_tower", (False, True)) def test_visual_lora(freeze_vision_tower: bool): model_args = ModelArguments(model_name_or_path="Qwen/Qwen2-VL-2B-Instruct") finetuning_args = FinetuningArguments(finetuning_type="lora", freeze_vision_tower=freeze_vision_tower) config = AutoConfig.from_pretrained(model_args.model_name_or_path) with torch.device("meta"): model = AutoModelForVision2Seq.from_config(config) model = init_adapter(config, model, model_args, finetuning_args, is_trainable=True) trainable_params, frozen_params = set(), set() for name, param in model.named_parameters(): if param.requires_grad: trainable_params.add(name) else: frozen_params.add(name) if freeze_vision_tower: assert "base_model.model.visual.blocks.0.attn.qkv.lora_A.default.weight" not in trainable_params else: assert "base_model.model.visual.blocks.0.attn.qkv.lora_A.default.weight" in trainable_params assert "merger" not in trainable_params assert "base_model.model.model.layers.0.self_attn.q_proj.lora_A.default.weight" in trainable_params