Spaces:
Running
Running
# Copyright 2025 HuggingFace Inc. and the LlamaFactory team. | |
# | |
# This code is inspired by the HuggingFace's transformers library. | |
# https://github.com/huggingface/transformers/blob/v4.40.0/examples/pytorch/summarization/run_summarization.py | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from typing import TYPE_CHECKING, Optional | |
from ...data import SFTDataCollatorWith4DAttentionMask, get_dataset, get_template_and_fix_tokenizer | |
from ...extras.constants import IGNORE_INDEX | |
from ...extras.logging import get_logger | |
from ...extras.misc import calculate_tps | |
from ...extras.ploting import plot_loss | |
from ...model import load_model, load_tokenizer | |
from ..trainer_utils import create_modelcard_and_push | |
from .metric import ComputeAccuracy, ComputeSimilarity, eval_logit_processor | |
from .trainer import CustomSeq2SeqTrainer | |
if TYPE_CHECKING: | |
from transformers import Seq2SeqTrainingArguments, TrainerCallback | |
from ...hparams import DataArguments, FinetuningArguments, GeneratingArguments, ModelArguments | |
logger = get_logger(__name__) | |
def run_sft( | |
model_args: "ModelArguments", | |
data_args: "DataArguments", | |
training_args: "Seq2SeqTrainingArguments", | |
finetuning_args: "FinetuningArguments", | |
generating_args: "GeneratingArguments", | |
callbacks: Optional[list["TrainerCallback"]] = None, | |
): | |
tokenizer_module = load_tokenizer(model_args) | |
tokenizer = tokenizer_module["tokenizer"] | |
template = get_template_and_fix_tokenizer(tokenizer, data_args) | |
dataset_module = get_dataset(template, model_args, data_args, training_args, stage="sft", **tokenizer_module) | |
model = load_model(tokenizer, model_args, finetuning_args, training_args.do_train) | |
if getattr(model, "is_quantized", False) and not training_args.do_train: | |
setattr(model, "_hf_peft_config_loaded", True) # hack here: make model compatible with prediction | |
data_collator = SFTDataCollatorWith4DAttentionMask( | |
template=template, | |
model=model if not training_args.predict_with_generate else None, | |
pad_to_multiple_of=8 if training_args.do_train else None, # for shift short attention | |
label_pad_token_id=IGNORE_INDEX if data_args.ignore_pad_token_for_loss else tokenizer.pad_token_id, | |
block_diag_attn=model_args.block_diag_attn, | |
attn_implementation=getattr(model.config, "_attn_implementation", None), | |
compute_dtype=model_args.compute_dtype, | |
**tokenizer_module, | |
) | |
# Metric utils | |
metric_module = {} | |
if training_args.predict_with_generate: | |
metric_module["compute_metrics"] = ComputeSimilarity(tokenizer=tokenizer) | |
elif finetuning_args.compute_accuracy: | |
metric_module["compute_metrics"] = ComputeAccuracy() | |
metric_module["preprocess_logits_for_metrics"] = eval_logit_processor | |
# Keyword arguments for `model.generate` | |
gen_kwargs = generating_args.to_dict(obey_generation_config=True) | |
gen_kwargs["eos_token_id"] = [tokenizer.eos_token_id] + tokenizer.additional_special_tokens_ids | |
gen_kwargs["pad_token_id"] = tokenizer.pad_token_id | |
# Initialize our Trainer | |
trainer = CustomSeq2SeqTrainer( | |
model=model, | |
args=training_args, | |
finetuning_args=finetuning_args, | |
data_collator=data_collator, | |
callbacks=callbacks, | |
gen_kwargs=gen_kwargs, | |
**dataset_module, | |
**tokenizer_module, | |
**metric_module, | |
) | |
# Training | |
if training_args.do_train: | |
train_result = trainer.train(resume_from_checkpoint=training_args.resume_from_checkpoint) | |
trainer.save_model() | |
if finetuning_args.include_effective_tokens_per_second: | |
train_result.metrics["effective_tokens_per_sec"] = calculate_tps( | |
dataset_module["train_dataset"], train_result.metrics, stage="sft" | |
) | |
trainer.log_metrics("train", train_result.metrics) | |
trainer.save_metrics("train", train_result.metrics) | |
trainer.save_state() | |
if trainer.is_world_process_zero() and finetuning_args.plot_loss: | |
keys = ["loss"] | |
if isinstance(dataset_module.get("eval_dataset"), dict): | |
keys += sum( | |
[[f"eval_{key}_loss", f"eval_{key}_accuracy"] for key in dataset_module["eval_dataset"].keys()], [] | |
) | |
else: | |
keys += ["eval_loss", "eval_accuracy"] | |
plot_loss(training_args.output_dir, keys=keys) | |
if training_args.predict_with_generate: | |
tokenizer.padding_side = "left" # use left-padding in generation | |
# Evaluation | |
if training_args.do_eval: | |
metrics = trainer.evaluate(metric_key_prefix="eval", **gen_kwargs) | |
trainer.log_metrics("eval", metrics) | |
trainer.save_metrics("eval", metrics) | |
# Predict | |
if training_args.do_predict: | |
logger.warning_rank0_once("Batch generation can be very slow. Consider using `scripts/vllm_infer.py` instead.") | |
predict_results = trainer.predict(dataset_module["eval_dataset"], metric_key_prefix="predict", **gen_kwargs) | |
trainer.log_metrics("predict", predict_results.metrics) | |
trainer.save_metrics("predict", predict_results.metrics) | |
trainer.save_predictions(dataset_module["eval_dataset"], predict_results, generating_args.skip_special_tokens) | |
# Create model card | |
create_modelcard_and_push(trainer, model_args, data_args, training_args, finetuning_args) | |